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THEORY OF MASSIVE PARTICLES
I. ALGEBRAIC STRUCTURE

By G.A.J.SPARLING
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh,
Pennsylvania 15260, U.S.4.

\q ‘
- ! (Communicated by R. Penrose, F.R.S. — Received 23 April 1980)
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A theory of massive particles is developed from the single hypothesis of broken conformal
invariance. The theory naturally incorporates fermions and bosons into a single frame-
work. Applied to hadrons, it gives a structure conjectured to be that of the Regge
trajectories, including the daughter particles. The theory predicts that the trajectories
are exotic.

INTRODUCGTION

The description of elementary particles within the framework of quantum mechanics and special
relativity began with the discovery of the equation for a scalar field by de Broglie (1923),
Schrodinger (19264, b), Klein (1926), Fock (19264, 5) Kudar (1926), de Donder & van Dungen
(1926) and Gordon (19264, ). The lack of a suitable probability interpretation for the wave
function led Dirac (1927) to construct a first-order relativistic wave equation describing a
particle of spin one-half. His work showed that the idea of spin for a particle, first exploited by
Heisenberg (1924), Uhlenbeck & Goudsmit (1925, 1926), Pauli (1927) and Darwin (1927), was
fundamentally related to the Poincaré group and hence to the nature of space-time itself (Weyl
1931). Experimentally the equation led to a series of triumphs, the most dramatic, perhaps, being
the confirmation of his suggestion that for every particle there should exist an anti-particle, whose
basic properties could be completely predicted (Dirac 1930; Oppenheimer 1930; Anderson 1932).
Also the simple form of the equation suggested how to couple systems described by it to electro-
magnetic fields, preserving relativistic invariance and leading eventually to the apparatus of
modern quantum field theory.
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28 G.A.J.SPARLING

Following Dirac’s work, physicists have accepted that a minimal requirement for the external
description of an elementary particle is that its wave function should belong to a unitary ray
representation of the Poincaré group. Wigner effectively solved the problem of construction all
such representations. More accurately, he reduced the problem to the task of finding representa-
tions of certain little groups, the isotropy groups of the Poincaré group when acting on various
points in momentum space. For some of these groups the representation theory had not been
finished. However, for a system of positive mass, the little group was just the rotation group, so
Wigner (1939) provided a complete account.

In 1932, Heisenberg formulated the notion of internal symmetry. He showed that it was useful
in analysing nuclear interactions to regard the proton and neutron as being essentially equivalent.
Mathematically he regarded the neutron and proton as forming basis states for the fundamental
representation of SU(2), the hypothesis being that nuclear forces were invariant under SU(2)
or isospin rotations (Heisenberg 1932; Cassen & Condon 1936). This idea was generalised
successfully by Gell-Mann & Ne’eman (1964) to an SU(3) invariance.

A curious feature of their approach was that the basic observed particles fitted not into the
fundamental three-dimensional SU(3) representation but into the octet, the eight dimensional
adjoint representation: ‘the eightfold way’. Another striking feature of these basic particles, the
pseudo-scalar mesons, the vector mesons, the baryons and the anti-baryons is that some are
fermions and others bosons.

In the light of modern attempts to unify fermions and bosons within the framework of super-
symmetry, one might wonder whether some such symmetry exists connecting the different
octets. It is the basic contention of the following work that such a symmetry arises naturally in the
context of broken conformal invariance.

Surprisingly this new symmetry is again (the Lie algebra of) SU(3). Quite unexpectedly it
extends the relativistic spin SU(2) symmetry found by Dirac and Wigner in just the same way as
the SU(3) of Gell-Mann & Ne’eman extends the isotopic SU(2) of Heisenberg. Analogous to the
idea of hypercharge introduced by Gell-Mann, in this scheme, is the baryon number. Analogous
to isospin is the ordinary relativistic spin.

The origin of the present theory lies in a new approach to answering the following question:
what happens to a system transforming under the conformal group, when the conformal invari-
ance is broken by fixing the mass?

As early as 1910 it was recognized by Cunningham (1910) and Bateman (1910) that Maxwell’s
equations were conformally invariant. As the study of quantum mechanics has become in-
creasingly sophisticated, physicists have returned again and again to the conformal group as a
mathematical tool in their analysis. The conformal group is particularly convenient mathe-
matically since it is simple. However it has never achieved full respectability because its action
on a quantum mechanical system changes its mass in a continuous manner (Mack & Salam 1969).

If one asks what parts of the conformal group or its Lie algebra commute with the mass, then
the answer is simply the Poincaré group or its Lie algebra respectively. However a crucial
assumption of quantum mechanics is that operators on a quantum system may be multiplied
together in an associative way, not just commuted with each other. For a Lie algebra acting on a
quantum system, this means that the action extends naturally to an action of the enveloping
algebra of its Lie algebra. Mathematically, the enveloping algebra is the smallest associative
algebra, extending the given Lie algebra, such that the Lie bracket becomes just the commutator
of operators.
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MASSIVE PARTICLES. I 29

Remarkably, if one asks which sub-algebra of the enveloping algebra of the conformal algebra
commutes with the mass, the answer is an algebra larger than the enveloping algebra of the
Poincaré Lie algebra. More precisely a four-vector operator, called R below, must be added to
the ten Poincaré generators to obtain the required algebra, here called the Z-algebra. Further-
more R turns out to commute not only with the mass, but also with all four translations. So R®is
an intrinsic operator associated to the system, like the intrinsic spin. R% the Poincaré algebra
and the dilation generate the whole enveloping algebra of the conformal algebra.

The construction of the R® operator reduces the analysis of representations of the conformal
algebra to the discussion of representations of a ‘little algebra’ in complete analogy to the work
of Wigner with the Poincaré group, except that the little algebra is not a Lie algebra. As in
Wigner’s work, the physically most interesting positive mass case only will be analysed ex-
haustively here, the massless case being already well known.

A key point is that when conformal invariance is broken, provided the R?® operator survives,
essentially no useful information is lost. Although the dilations have been removed, even the
information of the intrinsic dimension of the system is retained —in other words there is only one
way of putting back the dilations.

In § 1 the definition and basic algebraic properties of the R operator are discussed. Thenin§2,
the representation theory of the Z-algebra is obtained, using the ‘little algebra’ technique, for
positive mass.

The representations are easily described. They consist of a collection of Poincaré representa-
tions all of the same (positive) mass and of spins j#, satisfying jmin < J < jmax, j—/min and
Jmax —Jmin nOn-negative integers, where jmax may be infinite. Each allowed spin occurs only once.
If jmax is finite a further continuous real number @ > jmax is required to fix the representation
completely. If jmax is infinite, two numbers are required. The vector part of R® carries the spin j
into j + 1 relating the different Poincaré representations.

Physically, it is conjectured that the representation of bounded spin corresponds to a hadron
resonance of spin jmax and its daughters of lower spin, but roughly the same mass. This involves
pretending that these resonances are stable~it is a zero width approximation. It will turn out
that all the daughters have the same parity as their parent, contrary to one’s naive expectation.
The parameter « carries the information of the dimension of the system.

The structure of the R® operator in these representations is too complicated for one to be
completely satisfied. One can ask, can one factorize R modulo terms in the spin and momentum,
into the product of a spinor operator 4 and its Hermitian conjugate r4'? Clearly the answer is no,
within the context of a single Z-algebra representation, since 4 must carry half-integer spin,
whereas the spins in an Z representation are integrally spaced. Hence the 74 operator if it exists
must be an intertwining operator connecting different Z representations. In particular it must
change the Casimir eigenvalues defining the Z representation. To handle these changes neatly,
the Casimir eigenvalues are expressed as symmetric polynomials in four variables £, /, m and p
which sum to zero. Then it is found that an essentially unique r4 exists, with the required
properties, where 74 takes k, [, m, ptok+1,[+1, m+1, p—3.

Surprisingly when the commutator properties of 74 with itselfand its conjugate 74’ are examined,
one finds that 74, r4', §% and P generate SU(3), where S is the relativistic spin operator intro-
duced by Pauli and Lubénski (1942) and P is the operator with eigenvalue p. So the structure of
the £ representations may be subsumed in the well-known theory of SU(3) representations. It
is hard to see how this result could have been anticipated.

4-2
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30 ~ G.A.J.SPARLING

To tie down the physics completely it is suggested that 1P is the baryon number and the SU(3)
quantum numbers for the internal symmetry multiplet are identical to the SU(3) quantum
numbers of the 74, §¢, P representation.

In terms of the analogy with the SU(3) of the eightfold way, r4 is an operator carrying one unit
of ‘strangeness’ (here baryon number) and ‘isospin’ one half (here spin one half). R®is then an
operator of zero ‘strangeness’ which mixes up the states of a given ‘strangeness’ in the SU(3)
multiplet, carrying ‘isospins’ one and zero. The idea that R® relates the resonance of highest spin
to its daughters of lowest spin may now be generalized: the whole SU(3) multiplet consisting of
states of a variety of spins and baryon numbers is to be considered as a unit. One may regard the
state of highest spin as being the parent, all the others then being the daughters. However it is
probably more democratic to regard all states as being on an equal footing: a nuclear family
without a matriarch or patriarch !

The basic example of this structure is given by the octet. This contains eight states, two each of
baryon numbers plus and minus one, four of baryon number zero. The two independent states
of baryon number plus one are the spin-up and spin-down states of the same spin one half particle.
Similarly for the two states of baryon number minus one. The four states of baryon number zero
comprise the three spin states of a particle of spin one together with the single spin state of its
‘daughter’ particle of spin zero.

The hypothesis that the internal SU(3) representation is the same as the ‘external’ requires
that each particle in the ‘external’ octet belongs to an internal SU(3) octet. For this fundamental
octet, the obvious candidates are the (stable) baryon octet for the states of baryon number plus
one, the vector and pseudoscalar meson octets for the states of baryon number zero and the anti-
baryon octet for the states of baryon number minus one.

Note that unlike the situation for the internal SU(3), the external ‘isopin’ symmetry is com-
pletely unbroken, at least to the extent that space—time is locally isotropic. The external ‘strange-
ness’ is, on the other hand, totally broken.

In nature one is aware that resonances do not all exist, even approximately, at one given mass
value. Indeed there is considerable evidence for the existence of sequences of states of increasing
spin whose mass, squared, varies approximately linearly with the spin, the so-called Regge
trajectories (see for example, Chew & Frautschi 1960; Collins 1977; Penrose et al. 1978). It is
normally assumed that apart from their mass, spin and possibly parity, the states on a given
trajectory have the same quantum numbers, in particular, the same SU(3) quantum numbers.
However, in the present scheme, the non-negative integers A and x which characterize an SU(3)
representation obey the inequalities

Nt p=~|B=3p-N)| > 27 > |B-3A-u)),

where B is interpreted as the baryon number and J# is the spin. In particular A +x > 2J, so, on
a trajectory, as J increases, so must A + .

Thus the main qualitative prediction of this theory is that Regge trajectories are exotic, the
states of higher spin necessarily belonging to SU(3) multiplets which are not of the standard
octet, decuplet or singlet types.

The question arises: is there an algebra capable of generating the entire structure of the Regge
trajectory, rather than just the daughter structure? Since the trajectories are probably infinite,
such an algebra would have to be non-compact. Surprisingly, a natural candidate for such an
algebra is already at hand. One notices that the 74 operator is asymmetric in its treatment of £, I,
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MASSIVE PARTICLES. 1 31

m and p. One asks if operators, s4, ¢4 and A4, analogous to 74 exist that factorize R and that
respectively lower one of &, / or m by three units and raise the remainder of £, /, m and p by one
unit. One finds that such operators do exist, with one crucial proviso. Just as R* = 7474 modulo
terms in the spin and momentum, one has R* = A4X4’, but one finds that R* = —s454" and
Re = —t4{4’| each modulo terms in the spin and momentum.

Each of A4, s4, t4 generates an algebra analogous to the SU(3) found for the 74 operator: the
A4 algebra is again SU(3), but because of the minus signs above, the s4 and ¢4 algebras are
SU(1, 2). Finally one asks what structure is generated by all the operators r4, s4, ¢4 and A4 taken
together. Amazingly one finds it is a Lie algebra of twenty-eight dimensions, the algebra called
0O(4,Q) or SO(6,2). Its maximal compact subalgebra is SO(6) x SO(2) and is the algebra
generated by 4 and A4 together.

The entire structure then forms one hermitian representation of SO(6, 2) and is conjectured
to be the collection of all particles along a given trajectory, including the ‘daughter’ or ‘nuclear
family’ structure. The representation breaks up into irreducible SO(6) representations corre-
sponding to symmetric trace-free £-index tensors in six dimensions, one for each non-negative
integer k. Both particle and anti-particle appear in each such representation. It is conjectured
that the overall mass formula has the square of the mass depending linearly on the parameter £,
which turns out to be just A + .

For each fixed %, each pair (A, #) with sum £ occurs once in the SO(6) representation. This
means that the SO(6) representation, for £ > 0, always contains SU(3) multiplets of non-zero
triality. Whether these can exist or not is a moot point. Standard points of view suggest that such
multiplets would have non-integral electric charge. It seems that one must reserve judgement on
this issue, for the moment.

Even if they do not now exist, one might speculate that at an earlier stage in the universe’s
history, at a temperature high enough to possess symmetries which are now broken, such multi-
plets may well have existed. It is clearly very possible that at such times, the particle spectrum
might have been radically different from the current spectrum.

Another interesting and seemingly natural possibility is that the “true’ internal symmetry
group is not the SU(3) of Gell-Mann & Ne’eman (1964), but is SU(4) or U(4), to match the
maximal compact subgroup of the spectrum generating algebra SO(6, 2). Thus the internal
symmetry representation at level £ might well be the space of symmetric trace-free £-index
tensors in six dimensions, or equivalently the SU(4) representation corresponding to the 2 x &
rectangular Young tableau. Whether this SU(4) has anything to do with the new family of
particles recently unearthed remains to be seen.

In §§ 3 and 4 the derivation of all the mathematical structure alluded to so far, will be given.
It is to be noted that the discussion is entirely abstract and relies not at all on any model of the
system under discussion. Only elementary quantum mechanics is used and rigorous mathematics.
It is not even assumed that the system is to be described by quantum fields on space—time.

However, remarkably, there is at least one model, which possesses all the properties under
discussion, known to this authcr. This is the twistor model of hadrons, which seeks to describe a
hadron by three twistors and has been studied intensely over the past six years by Penrose (1975),
Perjés (1975), Perjés & Sparling (1979), Hughston (1979), Hodges (1975), this author and
others. In particular, the key property of the factorization of the R® operator was discovered by
the author some two years ago, in the twistor model, though stupidly it was not realized at that
time that the 4 operator generated with the spin and the baryon number an SU(3) algebra. In
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32 G.A.J.SPARLING

the twistor model the 74 operator is a measure of the non-locality of the system. It vanishes
identically, for a two-twistor system, which is thought to describe a lepton.

The twistor system has one further feature which the abstract picture currently does not: it
automatically links the internal and external symmetry in such a way that the A and x for the
external SU(3) are indeed identical to the internal SU(3) A, # quantum numbers. This is an
elegant ansaiz of the abstract picture, but a prediction of the twistor model.

The experimental test is basically whether or not the trajectories are exotic. Ifit turns out that
they are, this will lend credence to both the abstract picture and the twistor model. It is not yet
understood by this author whether or not there is an additional SU(4) internal symmetry hidden
in the twistor scheme to match the full SO(6) sub-algebra of the spectrum generating algebra.
One way to force such an SU(4) to exist is to go to a four-twistor scheme. But itis conceivable that
it already exists in the three-twistor scheme if properly understood.

In §5 of part IT of this work, to be published separately, some of the phenomenology is
discussed, particularly indications already present in the data for the existence of exotic SU(3)
multiplets. In § 6 of part II, the description of the system by means of quantum fields is tackled.
One begins to see that the existence of the 74 operator is connected with transformations that mix
together space-time and spinors, giving a commutative version of supersymmetry.

It has long been held by this author and others, that the existence of such objects as the proton
precludes the definition of points ‘ within’ the proton. The proton is non-local in a very deep way,
yet to be completely fathomed. Here one is beginning to see the emergence of a theory that will
deal with these features directly.

1. THE #-ALGEBRA

From now onwards, since the introduction has been rather lengthy, the presentation will
concentrate on the mathematics, keeping discussion to a minimum.

The standard abstract index convention of Penrose will be used throughout.

The infinitesimal generators of the conformal group of space—-time form a fifteen-dimensional
algebra, €, spanned by the translations P,, the Lorentz transformations M,¢ = — M¢,, the dilation
D and the special conformal transformations Q. P,, M,° and D together span the eleven-
dimensional sub-algebra 2. P, and M,° span the ten-dimensional Poincaré subalgebra 2 of €
and 2. Their commutation relations are

[Fas B] = 0, [Py, My] = ifi(gopP* — g4°B,), (1.1)
(M0, M2 = iFi(goe M — g, M — g® M, + g.°M,7), (1.2)
[D,F] = —iF, [D,M]=0, [D,D]=0, (1.3)
[Fo, Q7] = —ih(M, — hDg,?), (1.4)
[My, Q7] = (g™ @y — £,°Q°), (1.5)
[D, Q%] =1Q%, (1.6)
[Q% Q"] = 0. (1.7)

Equations (1.1) and (1.2) are those for 2; (1.1)~(1.3) are for 2. €, 2 and & are real algebras.
In (1.1)—(1.7) the commutators contain the factor : this being more appropriate for the discussion
of representations in terms of hermitian operators.
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Let €., 2, and 2, denote respectively the enveloping algebras of €, 2 and 2. Adjoin to each
of €., 2. and 2, the element m~2 and its powers m—%", where r is an integer, 7 > 0, obeying

m=2P,P% = P, Pam=2 = 1, (1.8)
[m=2, X] = —m=2[P,Pe, X]m* (1.9)

for any X € €,. Call the resulting algebras €¢(m—2), D(m~2) and #,(m~?%). The element m~2is then
the inverse of P, P? = m?, the mass squared, and will often be written 1/m?2.

Next defi
ext demne M*ab = %eabchcd. (1-10)

The following is the first main result:

TueOREM A. Define in €,(m=2), R® by the formula

Re= Qo— %M}%Mcf—‘Md(an/mz MYy —1h (D"%M“b + Mabn%D) - %ﬁzD%D + 2ﬁ2%. (1.11)
Then R® is manifestly hermitian if Q%, F, and M b are, and is translationally invariant:
[B,, R*] = 0. (1.12)
Also, m®R® —m2Q® € D, and R® has the following commutation relations:
[D, R%] = iR%, [M,°, R = ih(g™R,— g,°R°), (1.13)
[Re, RY] = (2ifi/m?) [R°P, M + ReM e P¥! + Pla MY, R°]. (1.14)
Finally, the freedom in choice of R® € € (m=2), obeying
[m? Rl =0, m2?(R*— Q% eD,, (1.15)

is R* - R*+m~2g® where g* € P, and g* belongs to the sub-algebra of P, generated by P* and M**P,.

Although one may prove theorem A by a direct computation, it is useful to develop some extra
structure to render the basic definition (1.11) more transparent. First extend € trivially by an
abelian one-real-dimensional algebra generated by an element f satisfying [, ¢] = 0, for any
ce€o(m2), [B, 8] = 0. Denote the resulting algebra (U(2, 2)), by %, with enveloping algebra
U, and m—2-extension ¥ o(m=2).

Next define, in succession, B
A=D—if/2h, A= D+if/2h; (1.16)

the Pauli-Lubénski spin vector (in £,) :
Su= M* 2P, = Je 1M, Py (1.17)
the constrained relativistic position operator (in £,(m-2)):
X = Im—2(M®P, — P,M"?); (1.18)
the constrained complex position operator (in £ (m=2)):

Yo = Xo+im-2Se, Yo = Xo—im-25e (1.19)
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34 G.A. J.SPARLING

= — P,Y%); the unconstrained position operators:

o Pe pe

XaEXa'I'%ﬁ(.D'nTz"F”?D), (120)
PpPe pe

ZaE Ya-l-%ﬁ(Aw-l'Ez/\), (121)

_ — _Pa pa_

Z“EY“+%ﬁ(/\E2+E2/\); (1.22)

and the operator: R4 = Q4— ZAB'Py, , ZB4’ /
= Qo — L(ie%,, ZVPeZ2 + ZoP, 7¢ + Z¢P, Z¢ — Z¢PZ). 1.23
2 bed c c
Then [P, R9] = 0, m*Roe U, and
1 1
R = Re — 5y S s 2P (1.24)
—_— a a
= Q*—YAB'P, Y B4 _ 1f( DX+ X2D) — %fﬂD% D+ %ﬁz%. (1.25)
Theorem A now has the alternative form:

Tueorem A’. The algebra U o(m=2) may be generated by P,, Z* and R* obeying the relations

[P0 Bl =0, [Py 2] =[P, 2%] = ihd 2, (1.26)
[Z4,20] = 0, [Z% Z0] =0, [Z%Z0] = —(2ih/m?) (ZAB' — ZABYPBA,  (1.27)
[P, R] =0, (1.28)
(22 RY] = (2ih/m?) RAB'PBA", [Zo, RV) = (2ifi/m?) RPA' PP, (1.29)
[Re, RY] = — ih[RP4/(ZAB — ZAB) _ (74’ _ ZBA') RaB'], (1.30)
with the relations Mab = cA'B'Z(dy, PEC | gABZ’ PEIC, (1.31)
Q% = R ZAB Py, 2B (1.32)

D = (1/2#) (P, Z5+Z°P,), f = i(P,Z¢—P,Z0), (1.33)

Xo — 1(Z0 4 Z0), 8¢ = }(m?/i) (Zo— Zo) + PP, (1.34)

Yo — Za—%(Zbe%+%Pbe), (1.35)

Yo Za—%(Zbe%+%aZb). (1.36)

Again one proves theorem A’ by direct computations, simpler though than those involved in
theorem A. :

Thus P,, Z¢ and R completely characterize the structure of %, (m=2), with Z% complex. P, and
Zo together describe the enveloping algebra @,(f) of the extension 2(f) of & by the abelian
piece £. '

CoRrOLLARY A 1. Let A denote the subalgebra of € o(m—2) defined by

R ={re€,(m2); [m?r] =0} (1.37)
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Then R is generated by R, Py and M,>. Also € o(m=2) is then the extension of R, R(D) obtained by adding
the single extra generator D obeying

[D,D] =0, [D,P]=:P% [D,R,]=—iR, [D, M,] = o. (1'38)

That £ is a subalgebra follows from its definition by the use of the Jacobi identity. That £ is
generated by R4, P, and M, follows immediately from theorem A by inspection.

Next the Casimir operators of the Poincaré subalgebra £ are P, P* =m?, the mass squared, and
Jr= - m~2§4S,,, the relativistic spin squared. These obey:

[m% Re] = 0, [m? D] = 2im?, (1.39)

[J%,D] =0, [J2R%] = 2ifm—2c*<3P,R,S, + 2#2R% — 2/*R°P, P2, (1.40)

CoroLLARY A 2. Define C, = R°P,+ J2, (1.41)
C; = RS, (1.42)

C, = m*R°R, + 2#2 T2, (1.43)

Then C,, Cy and Cy€ €., and are the three Casimir operators of €.

Again the proofis by direct computation. Corollary A 2 has the following alternative form:

A

CoroLLARY A 2'. Put G =4, (1.44)
C, = ReP, + 2, (1.45)
. C, = RS, + 1472, (1.46)
C, = m*ReR,, + 2022, (1.47)
Then (:"\1, C’Az, 63 and CA’4 €U, and are the four Casimir operators of U . Also
C, = Co+3p2, (1.48)
Cy = C,, (1.49)
C, = Cy— BCy + 157C, + 4454 (1.50)

CoRrOLLARY A 3. The Casimir operators of R are Cy, Cs, Cy and m®.

The behaviour of the various operators constructed from the conformal algebra under discrete
symmetries may be inferred from their realization as generators of symmetries of compacted
space-time. One finds that under a charge-parity inversion denoted by ¢4, the quantities
Pe, Meb, Q2 D transform according to

cfpPy(cp)~t = t5 P15, (1.51)

cfe M@ (cfe) ™t = tg 18 1B 1B M, (1.52)

cfeQ(efp) ! = 115 QY (1.53)

cfeD(efe)™ = D, (1.54)

where a7, = 2 and the spatial inversion leaves ¢, invariant. These transformations induce

cpM*D(efe) =t = — 1818 1Bt M*ed, (1.55)

cfoSefe) ™t = — 1.5 P, (1.56)

cfX(efe) ! =t t X0, (1.57)

cfYo(cf) L = i 1Y, (1.58)

/R (ef) ! = tf 14 RO (1.59)

5 Vol. go1. A
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36 G.A.]J.SPARLING
Taking in addition cfef(efe) ™ = =B, (1.60)
one has cfid(efe) L = A, (1.61)
S Z(cf)) ™ = thIH Z0, ' (1.62)
cfR(cfe) ™t = th 1R, (1.63)
cfim?(cfe) ™ = m?, (1.64)
ofe T (ep)™t = T2, (1.65)
cfiCylep)™ = Cy, (1:66)
efCylecfe)™ = —Cy, (1.67)
efiCylef) ™t = Cy, (1.68)
efiCylep)™t = Cy, (1.69)
fCy(efe) ™t = —Cy, (1.70)
efiCy(ep)t = C,. (1.71)

The charge parity inversion gives an automorphism for each of the algebras under discussion,
with square the identity transformation.

Geometrically, the transformation ¢/ follows from the space-time parity transformation.
Why, then, is it not the operator corresponding to parity?

Because, from (1.67), ¢4 changes the value of a Casimir operator. Thus the nature of the
system is changed by the transformation. It cannot be the parity transformation. What, then, is
the parity transformation £? Or, equivalently, what is ¢? ¢ must be an automorphism leaving P¢,
M@ and D invariant which changes back the sign of C;. Surprisingly, such an automorphism does
exist, satisfying

Picl = Pa, (1.72)
eM®et = M, (1.73)
Dot =D, (174

cRict = — Ra 4 2RP,(PeP)-1 Pa
_ 9P4RVPH (PoP)1. (1.75)

¢ is an automorphism which does not come from the Weyl symmetries of the conformal algebra,
although it is a symmetry of the extended enveloping algebra %, (m=2).

If one takes in addition et = — B, (1.76)
then one has ¢Ric—1 = — R 2RVP,(PeP)-1 Pa, (1.77)
et =R (1.78)

Also eM*abe=1 = Jf*ab (1.79)
oSt = e, (1.80)

X1 = Xo, / (1.81)

Yoot = Yo, (1.82)
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MASSIVE PARTICLES. I 37
cZ0%c = Z0 + YiPe(PeP)-1, (1.83)
em2el = m?, (1.84)
T2l = 2, (1.85)
eCye! = Gy, (1.86)
Cye! = — G, (1.87)
Cpe' = Cy, (1.88)
Coet = C,, (1.89)
Cyet = -G, (1.90)
Cpet = C,, (1.91)

One has ¢/ = fee. The parity transformation z is then the product c/.e. /2 agrees with ¢/ on the
algebra 2,(m=?) and transforms R® according to

JiRop~1 = 3(PeR) (PG ROPG 1. (192)

The transformation 4 leaves invariant m?, J 2 Cy, Cy and C,.
In a momentum state, one may regard P¢ as a c-number. Then % may be taken proportional to
Pe (this is equivalent to going to the rest frame). In this case (1.92) boils down to just

/RY:1 = Re. (1.93)

So the R%operator preserves parity. All the states in a fixed Z2-algebra representation must have
the same parity. At the same time their behaviour under ¢4 must alternate with spin. These are
very stringent requirements on any attempt at a physical interpretation of the conformal pro-
perties of the system.

2. REPRESENTATIONS OF THE A-ALGEBRA

The strategy is to combine suitable Poincaré representations to build an Hermitian repre-
sentation of the Z#-algebra. The mass is fixed and positive throughout. Since [P,, R?] = 0, a ‘little
algebra’ approach may be used and the entire discussion confined to a fixed momentum. So only
the spin parts of the wave function need to be considered. Thus the problem is reduced to finding
Hermitian representations of the little algebra:

[R% B] =[$% B] =[P B] =0, (2.1)
[Re, Y] = — ifigabedR, P,, (2.2)
[Se, 8] = — ieabedS, P, (2.3)
[Re, RY] = ifim—2®<a(R, S, — S, R,)

= 2ihm—2eedR S, + 22m~2(R*Pb — ROPA)., (2.4)

R, §¢and P*act on states | j, ¢), which may be taken to be eigenstates of P? with eigenvalue also
written P?, of relativistic spin j#. They are acted on by the spin vector $¢in the standard Poincaré
fashion:

Se17,q) = h(aip ap PPPY-1[adaP Ph j, g+ 1) + (j—q) (@4ad’ — aB'PpAaBPy4")| j, )
+q(2f— g+ 1) T4aBPLA"| j, g —1)]. (2.5)
5-2
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38 G.A.J.SPARLING

In particular, they satisfy
§44q o g jy 4y = = PA4B 0 (=) |J> s (2.6)

where ¢ and 2j are integers satisfying 0 < ¢ < 2j (here and in the following P2P, has been
normalized to the value 2; for un-normalized P¢, simply replace P* everywhere by (3m2)~% P4).
From the work of Mack (1977), one may take the spin spectrum to be non-degenerate.

The state | j, ¢) is orthogonal to |j, ¢’y unless j = j’ and ¢ = ¢’, and has normalization

s 4105 9> = di ¢ (@ Pppy &P [(Z+1) (- )17 (2.7)
which makes §* Hermitian. The d; > 0 may be chosen at one’s convenience.
On the basis of general considerations for the vector—scalar operator, R4 one must have

R|j, q)y = #a; P|], q) +£5;5|J, ¢)
+8,[(2+1) (% +2) @ Ppp )] LY | j, gy + 728, L | j, g, (2.8)
where Le and L are, respectively, generic spin-raising and lowering operators defined by

Loy gy = —ataB B j+ 1,94 2) = (2 +1—¢q) @a? —aP Py 4aPPp?) |j+1,9+1)

+(2+1—q) (F+2—q)T@BPs? |j+1,9), (2.9)
1:“ |7, ) = ataB Py|j—1,q) —q(@tadt —aB'PpAaBPpd) | j—1,q—1)
—q(g—1)a4abPyt | j—1,9-2), (2.10)

and where o, £, v; and ¢; are appropriate Clebsch—Gordan coefficients to be determined (when
/= 0 occurs in the representation put g, = 0).

For an irreducible representation, one may assume that the spins j form an unbroken string:
all j satisfying j = jmin + 7 for some fixed jmin and either for all non-negative integers n or for all
integers n satisfying 0 < 7 < Jmax —Jmin, for some fixed jmax With jmax —jmin @ non-negative

integer. Then 8, , = 0 and one can define §; = y;_; = 0 for j < jmin. Also if jmax exists,

min

Vimex = 0 and one can define d;,; = y; = 0forj > jmax. Next define

me = ad'aB Py, Mo = qAaBPg4’, [* = gdad —aP Py AaBPy4'. (2.11)
One has Pe(@PPpp.al) = adad +aBPpd'aB Py,

mema = 4, = — (@PPpp a?)?, (2.12)
mom,, = mem, = m*P, = meP, = m*l, = mel, = [°P, = 0, (2.13)
2mlal?) = (a4'aB'e4B + a¥ Py Aa? PpPeA'B") (@ Py o), (2.14)
InlaP) = g4 g B eAB — qC P (AGgBed' B (2.15)
2mlem® = (GCP A aBleAB — ol P, MAgBed’B’) (aP Py o), (2.16)
2[ePY) = — 95O P aBIeAB — 200 P (AGBeAB’, (2.17)
e, mele = 2iml 2P (aP Py p a?), (2.18)
éabcdchd = 2imlP @l Py p a?) 1, (2.19)
e mem® = illePY@PPpp a®) L, (2.20)
€, IcP? = — 4imlem®(@P Ppp aP) 1, (2.21)
€apea = 12iliqmy MoPiy(AF P o) =3, (2.22)
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MASSIVE PARTICLES. I 39
Alsolet J, Q,a(J), B(J),v(J) and 8(J) be the operators whose eigenvalues acting on |7, ¢) are
respectively j, ¢, a;, f;, ¥; and 8;. Then

Re = R2a(J) Pa+ hB(J) Sa+ #2LA[ (2 J + 1) (2J + 2) (@GP Py a2)2) Ly (J) + AL*(2J + 1)1 8(J)
. (2.23)
and the expressions for $¢, L, L* may be rewritten

$e|7,q) = @PPpp o) h[m®|J, g+ 1)+ (G—q) I*|J, @) +q(2/ — g+ 1) m*|J, g = 1)], (2.24)
Lelj,qy = —me|j+1,q+2)—(2f+1—¢q)l*]|j+1,q+1)

+(2+1-q) (2 +2—q)m*|j+1,9), (2.25)
Le)j,qy =ma|j— 1,9y —qle|j—1,¢— 1) —g(g—1) | j— 1,9 - 2). (2.26)
One sees that PeS, = PeL, = Pl = SoL, = 8oL, = L°L, = L°L,
=8P, =L,P*=LPe=L,5 =1L,8 =0. (2.27)
Then, contracting (2.23) with P, and S, one finds using (1.41), (1.42):
2a(J) = i~2Cy— J(J + 1), (2.28)
2J (J+1) p(J) = — k3G, (2.29)
and B(J) = C3 = 01ifj = 0 occurs in the representation. Next
LoL, = —2(J+1) (2J +3) @PPppa?)?, (2.30)
LeL, = —2J(2J — 1) (@PPy aP)2. (2.31)

Hence, by using (1.43) and (2.23)
510, = 20 (J+ 1) + 4a2(J) — 4T (J + 1) p2(J)
—28(T+ 1) y(J) (2 + 1)1 = 28(J) y(J —1) (2] + 1)L, (2.32)

From (2.28), (2.29), (2.32) one obtains

2054175 +28; 75 = (Z+1)j(U+1) P+ +2) - (F+ )G+ D]
+(Z+1) (e =2+ 1)+ 1) e (2.33)

where ¢,, ¢; and ¢, are, respectively, the eigenvalues of £72C,, £73C;, and %~%C,. If j = 0 occurs,
omit the term containing ¢y in (2.33). Then (2.33) applies for each j occurring in the representation.
Now define ; for each j > jmin—1 by

28,5175 = (§—ca) (J +1) = 26j(G+1) G+2) G+ 1) (G +2) =BG+ 1)1+ ()4 (2.34)

if jnin # 0. If jmin = O, omit the term containing ¢;. Then substituting into (2.33) gives, for each
Jj occurring in the representation, k; = £;_, so k; = k is independent of j for j = jmin—1 and for
all j in the representation.

To find £, consider (2.4). Noting that [L%, L¥] = [L¢, L] = 0, one sees that [R%R?] changes
spin by 1, 0 or — 1 unit. Examination shows that the spin-changing pieces give no new informa-
tion. So it is sufficient to look at the terms of unchanged j in 2R?RY | j, ¢). Now

2LV = ifi~1(2] + 3) (GEPyp oF)2 c®edS P, (2.35)
QLI = — i 1(2J + 1) (GE Py o) 2 €048, Py (2.36)
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40 G.A.J.SPARLING

So using (2.35), (2.36), (2.1), (2.3), and (2.23) one has, modulo spin-changing pieces,
| 2RERY = i3] — BA(J) +0(J + 1) y(J) {(2J + 1) (2] +2)}1
—8(J)y(J + 1) {2J(2J + 1)}1] eabed§, P, (2.37)

(omit the §(J) term, when J = 0).
The terms of unchanged spin in the right-hand side of (2.4) are

ihewed( 12 (J) P+ hB(J)S,) S, + 243B(J) SPY = — iffeabedS, P, o (J). (2.38)

Hence equating (2.37) and (2.38), one must have, when j # 0, but otherwise for each j
occurring in the representation,

81V [(Z+ 1) (4217 = 87, (2% + 1] = B+ (2.39)

When j = 0 there is no condition, as (2.37) and (2.38) both vanish.
Now define [, for each j occurring in the representation and for j = j,;, — 1, when j;, # 0, by

01 7i(Z+2) = =40+ 1T+ 10U+ D =36+ ) G+ 1) + 14 (2.40)

Then substituting (2.40) into (2.39), one finds /; = [; ; = /isindependentof j. Sofor j > j,;n — 1,
(j#-1),

2y117) = — A+ 1)+ G+ 1) (+2) —26j(j+ 12 (j+2) + (i +1) ((—2a).  (2.41)

Comparing with (2.34), one obtains, provided zero is not the only spin occurring in the

representation, k=0, (2.42)

[ =2¢+c%—cy (2.43)

So, finally, to summarize: forj = jp;, — 1 and for all j occurring in the representation, provided
only that j = 0 is not the only spin occurring in the representation, one finds

20,4175 = (—c)) G+ 1) +5U+1) G+2)[T+1)* = 2¢] =5+ 1), (2.44)
where for j = — 1, the last term is omitted. Ifj = 01is the only spin occurring in the representation,
then (2.32) reduces to ¢, = ¢3, since all §; and y; vanish. So (2.44) holds for all j in the representa-
tion and for j = jmin— 1, even when j = 0 is the only spin.

Multiplying (2.44) by j+ 1 one defines f(j) by

SU) =20+ 1) 8y = (G—c) G+1)*+jU+1)2(G+2) ((J+1)*—26,) —¢§
=+ =+ Qe+ 1) - (+1)% (g —26) -} (2.45)

Again, since j = — 1 only occurs if j = 0 does also, when ¢; = 0, (2.45) is valid for j = j;;, — 1
and for all j occurring in the representation. The key point now is that y, ., =4; . =0, and
if jmax exists & 41 = Vjuax = 0 S0 that from (2.45), f(j) has j = jmin—1 and j = jmax (if it
exists) as a root (possibly repeated).

Conversely, if «;, f; and 8;.,7y; are defined by (2.28), (2.29) and (2.44), together with
8jpin = 0 and ;. = 0 (if a maximum spin exists), for complex numbers ¢,, ¢;, and ¢, satisfying
S Umin—1) = 0 and f(jmax) = 0 (if jmax exists), then $% and R* defined on Poincaré represent-
ations of fixed mass according to (2.5) and (2.8) give a not necessarily Hermitian representation
of the Z-algebra, the Poincaré sub-algebra having an Hermitian representation. Each spin j
occurs once in the range jpin < J < Jmax if Jmax exists, and once in the range j > juin if Jmax
does not exist, where j — jpin 15 integral, as iS jmax — Jmin-
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MASSIVE PARTICLES. I 41

If £() is non-zero for jmin <J < fmax, J —Jmin integral, then the representation is irreducible
and has no sub-representations. If f(j,) vanishes with jyin < Jo < Jmax, Jo —Jmin integral, and if
j+1 = Vj, = 0, then the representation is the direct sum of two irreducible representations, each
with no sub-representations. '

If y;, = 0 but &; 4, # 0, then the states of spins j, jmin <J < Jo» J —Jmia integral, form a sub-
representation, but the representation is not reducible to a direct sum of sub-representations.
Similarly ify, # 0butd; 4, = 0, then the states of spinsj, j, < j < jmax from a sub-representation,
but again the representation is not reducible to a direct sum of sub-representations.

One is fortunate that some of these subtleties are removed by requiring that the entire
ZR-representation be Hermitian. R will be Hermitian if and only if, for allj’, ¢/, 5, ¢,

SR G, 0> = h gl R[5 4 (2.46)

Using (2.5), (2.7), and (2.8), (2.46) boils down to
d;a; = d; @, (2.47)
d; f; = Jjﬁj’ (2.48)
di11v; = d;8;4(21 +2). (2.49)
Since d; = d; > 0, one has o =2a; p;i=24p;, (2.50)
(2+2) 0j11 = dj djn ¥y (2.51)

Also ¢y, ¢3 and ¢, are real, and from (2.45), (2.51)

0 <f(j) = dda 7% (2.52)

If the representation is irreducible and has no maximum spin, then jy,;, — 1is the largest real root
of f(j) = 0. In this case f(j) = 0 need have no other real roots than j = — 1 + jp;p.

Now suppose the representation has a maximum spin. First consider the special case
Jmax = Jmin = Jo, Say, when only the spin j = j, occurs.

If j, = 0, R* reduces to Re = f2a,Pe (2.53)

with a, real. Then €y =20y, ¢3=0, ¢4=4ag, (2.54)

FU) = G+ 120G+ 1D2 = 11 [+ 1) dexg). (2.55)

Ifj, > 0, R is given by Re = f%a; Po 4 B, 8%, (2.56)
where f5 = a; , and g, and «; are real, a; > 0. Then

6a = 287, +Jo(Jo+ 1) (2.57)

c3 = =28 70(Jo+ 1), (2.58)

¢ = 2o(Jo+1) + 485, — 487 JoUo + 1), (2.59)

£(7) =[G+ =781+ 1) = UGo+ DAL +1)— 447 ] (2.60)

Last consider the generic case of bounded spin, jmax > Jmin- Then f(Jmin—1) =f (Jmax) = 0
and f(Jypin+7) > 0, for 0 < 7 < Jmax —Jmin, # integral, and
SU) =10+ 1D —Janl [+ 1)? = Gmax+ 17 [(J +1)% —a?]. (2.61)
Since f (jmax — 1) > 0, one infers that a? > j2 ., so & may be taken real and & > jyax. Also with
& > jmaxs all conditions are satisfied. '
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42 G.A.J.SPARLING

To tie down this case completely, choose d;, after rescaling the states |, ¢) by a real factor if
necessary, to satisfy, for jyin <J < Jmax— 1,

473 = [+ 1= (st D17 (1= )72 (o 1 jmax+1) (41 +2)
X (j+ 1 +min) G+ L =fimin)- (2.62)
Then v, satisfies, for all 7, jmin <J < Jmaxs
[7i]* = (U +1—=2)*(j ~jmax)™ (2.63)

By suitably adjusting the phases of the states | j, ¢), if necessary, one may take y; real and non-
negative, so . o
Y= (U+1-a) (j—Jmax), : (2.64)

Zo; = (j+a) (J +jmax+1) ( =Jmin) (J +Jmin)- (2.65)

This completes the abstract description of the Hermitian positive-mass irreducible representa-
tions of the Z-algebra.
Summarizing the case of bounded spin, R is given by

R = Ko+ Ko+ (Cy— ﬁ) (PPt Pe—Cy S"(szbe)-l (2.66)
(with the last term omitted if a spin zero state occurs), where K¢ and its adjoint K* are defined by
K = 12(@aPPpp o) 2 L,[(2J +1) (27 +2)] (J + 1 —a) (J —Jmax)s (2.67)
Ke=m[(2J+2) 2T+ 1)) (J+140) (J+jmax+2) (J+1—jmin) (J+ 1 +jmin) L*  (2.68)
acting on states | j, ¢) normalized according to
Goalis 0 = e[+ 1) (2= ! (man+@)! (@-+jmax + 1)1]4 @ Popya?)¥ g1
x (J +Jmm) ! (7 =Jmin) ! (max =) U Himax + DTG+ ) (@~j= 1)1, (2.69)

¢ being a real positive constant. K4 raises spin by one unit, K% lowers spin by one unit. Also

2 = 3% Jhin Hmax(Jmax +2) +a?], (2.70)
C3} = 156 (Jmax + 1)% 2, (2.71)
Cy = C3+202C, — B[ JRin (Umax + 1)2 + (Jmax + 1)2a® + 222, 1. (2.72)

These formulae are valid even when only one spin is present in the representation (of course K¢
and K¢ then vanish identically).

3. SPINOR INTERTWINING OPERATORS FOR #-ALGEBRA REPRESENTATIONS

The discussion begins with the following simple algebraic lemma.
Lemma. Let }k, 1, tm, 1p be the roots of the polynomial equation
¥ +pxttox+7 =0 (3.1)

with p, o, and 7 complex. Note that k+[+m+p = 0.
Define a, b and ¢ by the equations

a=H(U+p) = —F(m+h), (3.2)
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MASSIVE PARTICLES. I 43
b= (i+m) = —H(E+p), (.3)
¢=}m+p) = —4(k+1). | (3.4)
Then +a, +b, +c are the roots of the polynomial equation

x84+ 2054 + (p2 —47) x2— 0% = 0. (3.5)

Conversely let +a, +b, +c be the roots of (3.5) with the sign of & fixed by o = abe. Then
th=14(+axbto), (3.6)
—H=%z2atbFo), (3.7)
—im=}(Fatbxo), (3.8)
~ip=3(taFbzto), (3.9)

+ signs are independent horizontally, but related vertically.
The six permutations of a, b, and ¢ together with the cight random sign changes +a, +6, *¢
give forty-eight different transformations altogether.
These agree one to one with the twenty-four permutations of &, /, m, and p, together with the
simultaneous sign change k,l,m,p - —k, —1, —m, —p.

are the roots of (3.1), where the +

The application here is to the polynomial
B(x) = 10— ¥4(20, + 1) — 22(cy — 3 — 260) — 3 (3.10)

(so ¢(x) = f(j) in the notation of § 2). One may choose the roots +a, +b, ¢, of ¢(x) = 0, such
that abc = ¢;. Then 1k, }, tm, }p are the roots of

=120+ 1) X2+ c3x — 2(cg—cy+ %) = 0. (3.11)

Consider from now onwards-the bounded spin-representations of the #-algebra. Then the
roots of ¢(x) = 0 are ¥ = + jmin, = + (Jmax+ 1) and + o, with & > jmax. (For convenience, one
excludes those representations containing only one spin, which do not satisfy these criteria, so
excluding a, < 0 and 28; < j, in the notation of § 2.)

To take account of the sign of ¢, it is often convenient to replace jiin, Jmax and « by closely
related quantities 7, 5, and d defined by

Jmin = §[s—7], (3.12)
Jmax = §(s+7), (3.13)
o= §(s+r)+2d+2, (3.14)
3= %(s—1)(s+r+2) (s+r+2d+4). (8.15)

Note that d > —1 and that (8.15) serves only to fix the sign of s —r; 7 and s are non-negative
integers. .

Then £, [, m and p are, in some order, 3r +s+4d+6, — (3s+r+4d+6), — (r—s+4d+2) and
s—r+4d+2. Since k, [, m and p define 7, s and d and they in turn define j iy, fmax, @ and ¢z, then
conversely, one may use £, /, m and p together or r, s and d together to characterize the Z-algebra
representation under consideration. For definiteness, put

k=3r+s+4d+8, (3.16)

[=—(8s+r+4d+6), (8.17)
6 i Vol. gro. A
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m=—(r—s+4d+2), (3.18)
p=s—r+4d+2. (3.19)
Note that Im+p) = —1(k+0) = 3(6-7) = £ jmin> (3.20)
10+p) = —3(k+m) = —3(s+7+2) = —Jmax— 1, (3.21)
CL(k+p) = —3(l4m) = 2(s+1)+(2d+2) = a, (3.22)
r+1=12k+1{+m), (3.23)
s+1=1(m—1), (3.24)
2d+1 = L(2p+k+1). (3.25)

States in a given representation may be labelled |c,, ¢5, 4,7, ¢), |d,7,5,7,¢) or equivalently

|k, L, m, p, 7, @)
The aim now is to clarify the structure of the R* operator in an Z-algebra representation by

factorizing it by means of spinor intertwining operators. By using the |4, 7, s, j, ¢) notation, define,
in succession,

14|d,1,5,5,9) = (@PPpp a?) ot Pyt [d—§,r+1,5]+ 5 g+ 1)
+(+1—q)at|d—L,r+1,57+3, 9, (3.26)
ma|d,1,5,5,q)y = PLad |d—L,r+1,5,j—4,¢)—q@t|d— 4,7+ 1,5,/ -%,q—1), (3.27)
)d,7,5,j,qy = o |d+§,r—1,5,] 5, @) +qP4 at |d+ §,r—1,5j— §,9—1), (3.28)
mA’|d,1,5,5,9) = (@ FPppa?) ot |d+3,r— 1,55+ 3,4+ 1)

+(Z+1-g) P ot [d+ 57— L5, +4, D), (3.29)
with scalar product

(da 7, S,j, qlda 7, S}j} ‘]) = e(d> 7, Saj) q! (aDPDD’ OCD,)zj [(2]+ 1) (2.7_ q) !]—1' (330)
In terms of the £, [, m, p notation, these read

4 |k> la m,[’,f, €I> = (EDPDD’ aD,)—l [OCB,PB‘A ]k+ 1> l+ 1, m-+ ]517—' 35j+%, 9+ 1>

+(Z+1—g)at|k+1,l+1,m+1,p-3, j+1, 1, (3.31)
ma |k, l,m,p,,q) = P4 a4 |k+ 1,1+ 1,m+1,p—3,7—%,¢)
—qad|k+11+1,m+1,p—3,j—%,q—1), (3.32)
Mk Lmpj,qy = ad' |k—1,1-1,m—1,p+3,7— 4, ¢)
+qPfad|k—1,l—1,m—1,p+3,j—%,q—1), (3.33)

mA |k, L,m, p,7,q) = (@PPppa?) [ —ad|k=1,l—1,m—1,p+3,7+4,q+1) ’

+ (2 +1—q) P4 at|k—1,1-1,m—1,p+3,7+4%,4], (3.34)

with scalar product
CkyLm,p,g, g1k Lmspog, @) = e(k, Lm, ) 41 (@PPp )P [(Z+1) (21— ¢) 1] (3.35)
Note that /4, m4, [+ and m4" are intertwining operators, since they change the d, r, s or

k, I, m, p values.

Although one might perhaps prefer the 4, r, s representation, since at least r and s have a simple
interpretation, the remaining formulae will be given only in the £, /, m, p representation, for
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reasons which will eventually become clear. Of course, any such formula may be translated
immediately into the 4, , s representation.

The intertwining operators /4" and m4’ are not the adjoints of /4 and m“ respectively. In fact,
using (3.31)-(3.35) one finds easily that

4= 12e(K,L,M,P,J)[e(K—1,L—1, M —1,P+3,J—})]"12J(2J + 1)1
=e¢(K+1,L+1,M+1,P-3,J+})[e(K,L, M,P,J)]" 1 (2J + 1) (2J +2)~1 14, (3.36)
4 = [4¢(K,L, M,P,J)[e(K+1,L+1, M+1,P—3,J+3})]-1 (2] +2) (2J + 1)1
= o(K—1,L— 1, M—1,P+3,J—}) [e(K, L, M, P, J)]-* (2] +1) (2J)-114,  (3.37)
mA = mAe(K,L, M,P,J)[e(K—1,L—-1,M—1,P+3,J+})]1(2J+2) (2J+1)1
=e(K+1,L+1,M+1,P-3,J—})[e(K,L,M,P,J)]"1(2J +1) (2J)tm4, (3.38)
m4 = mie(K, L,M,P,J)[e(K+1,L+1, M+1,P-3,J—1)]"1(2J) (2J +1)!
=e¢(K—-1,L—-1,M—1,P+3,J+ 1) [e(K,L,M,P,J)]1(2J + 1) (2J +2)"'m4. (3.39)
The basic equation defining the Z-algebra representation is, from (2.66)—(2.68),
R* = #?a (K, L, M, P, J) P+ fif(K,L, M, P, J) S
+ A2L(aPPy a?)2y(K, L, M, P, J)[(2J + 1) (2J +2)] !
+#2Le8(K, L, M, P, J) (2J + 1)1, (3.40)
where from (2.28), (2.29), (2.45), (2.64)—(2.65) and (3.20)—(3.22),

a(K,L, M, P,J) = h—2C,— 1J2—LJ
= — L (KL+LM+MP+PK+KM+LP)—1J2—3J—%,  (3.41)
2J(J+1) B(K, L, M, P, J) = ——3C; = &(KLM + KLP+ KMP + LMP), (3.42)
2(J+1)8(K, L, M, P, J+1)y(K, L, M, P, J)
[T 41— 3L+ M [J+1= LK +L)][J+1—1(M+P)]
X[J+1-HK+M][J+1-HL+P)][J+1-1K+P)]. (3.43)

Here, K, L, M, P, J, ¢(K, L, M, P, J), a(K, L, M, P, J), etc., are the operators whose eigen-
values on |k, I, m, p, j, q) are respectively £, [, m, p, j, e(k, [, m, p, f), a(k, I, m, p, f), etc.

4, m4, 14, m4 are generic spin-raising operators. The aim is to multiply them by suitable
functions of £, [, m, p, and j, and combine them suitably to achieve the factorization of the R*
operator. The key to success is to notice that L¢ and L4, as defined in (2.9) and (2.10), are easily
factorized: one checks that

Ly @PPpy aP)2 = [4m4’, (3.44)
[o = maja’, (3.45)
In addition one sees that
4" = 1§04 JPe,  [A]4 = f15a 4 (J + 1) Pe, (3.46)
mAm4 = — 180+ (J+1) Pe, mA'm4 = — 1§24 JPe, (3.47)
[(4,18] = 0 = [m4,mB], [I4,[%] =0=[m4,mP], (3.48)
[m4,14] = 0 = [[4,m*], (3.49)

6-2
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16 G.A.J.SPARLING
[AmB|k, [, m, p,j, ) = (h-1SA4P,B — JeAB)|k+2,1+2,m+2,p— 6,5, ¢), (3.50)
mAIB|k, 1, m, p,j, gy = (AASA4PLB 4+ (J+1) 648) |k +2,1+2,m+2,p—6,7,¢),  (3.51)
mB |k, L, m, p,j, q) = (A1SA4P LB — (J+1) e4B) [ k—2,1—2,m—2,p+6,7,¢), (3.52)
mA 1 |k, L m, p,j, g = (A ASAAPB + JeAB) [k —2,1—2,m—2,p+6,], ¢, (3.53)
1,844 = _ pl  PA4'], [14, SBB'] = — hIBPAB 4+ J4[APBB’, (3.54)
mASAL — o , PA4(J 4 1), [mA, SBB| = — kmBPAB 4 }hmAPBY, (3.55)
L, 844" = _ i PA4(J 4 1), [I4 SBB] = hlB'PAB — }4[4'PBE (3.56)
mp SA4" = fim 4 PA4' ], [m4', SBE'] = mB PAB — 3 fm4’PBE (3.57)

Next define

[4= hl4a(K,L,M,P,J) (2J+ 1)t = ha(K—1,L—1, M —1,P+3,J—}) (2J)71 14, (3.58)
A = fmAc(K, L, M, P, J) (2J + 1) = he(K—1,L—1, M—1,P+3,J—}) (2J +2)"'m4, (3.59)
[4 = KAD(K,L,M,P,J) (2] + 1) = fib(K+1,L+1, M+1,P—3,J+4) (2J+2)71 [+, (3.60)
nA' = hmAd(K, L, M, P,J) (2J +1)' = hd(K+1,L+1, M+ 1,P-3,J+}) (2J)'m4,  (3.61)

where a(K, L, M, P, J), b(K, L, M, P, J), ¢(K, L, M, P, J) and d(K, L, M, P, J) are suitable
Clebsch—Gordan coefficients to be found.
First require that

[4j4° = Ka = J2(GPPy, aP)-2 Lo y(K, L, M, P, J) [(2J +1) (2J +2)]

— 1R(@PPy )2y (K, L, M, P, J — 1) [(2] — 1) (2J)]1 Ls, (3.62)
A4 = Ko — j2La8(K, L, M, P, J) (2J + 1)1
_ 128(K, L, M, P, J+1) (2J +3)-1 Le. (3.63)
By using (3.44) and (3.45), this forces
a(K—1,L—1,M~1,P+3,J+3) d(K, L, M, P, J) = y(K, L, M, P, J), (3.64)
o(K—1,L—1,M—1,P+3,J—~1) b(K, L, M, P,J) = 2J8(K, L, M,P,J). (3.65)
Next define rd=[A4md, 4 =44 qd (3.66)
Then using (3.40), (3.46) and (3.47) one finds that
pard’ — Ro— #2a(K, L, M, P, J) Pi—hB(K, L, M, P, J) §¢
+ (2j+ ( +2Pa) K—1,L—1, M~1, P+3, J—3) b(K, L, M, P, J)

+o(K=1,L—1, M—1, P+3, J+}) d(K, L, M, P, J)]
+—§—3—2Sa[a(K— 1, L—1,M—1,P+3,J—3%) b(K, L, M, P, J)
—j(K-— 1, L-1, M—1,P+3,J+3%)d(K, L, M, P, J)]. (3.67)
Next reqﬁire that 74" be the adjoint of 74, 74" = 74", This forces [4 = [4 ;4 = 4, Now

Z‘T = E(K,L,M,P,J) [d(K—-l,L—l,M— 1>P+3’J_%)]_1
xe(K—1,L—1,M—1,P+3,J—%)[e(K,L, M, P, )], (3.68)
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A = d(K,L, M,P,J)[c(K—1,L—1, M—1,P+3,J +1)]
xe(K—1,L—1,M—1,P+3,J+%)[e(K, L, M, P, J)]- . (3.69)
Hence 74" = r4" if and only if
a(K—=1,L—1,M—1,P+3,J—3)[e(K—1,L—1,M—1,P+3,J 1]
= b(K,L, M, P, J)[e(K,L, M,P,J)]-1, (3.70)
(K-, L1, M—1,P+3,J+3)[e(K—-1,L—1,M—1,P+3,J+})]?

— d(K,L, M, P,J)[e(K,L, M,P,J)]-. (3.71)
Then (3.64), (3.65), (3.70) and (3.71) give

(2J+2) 8(K, L, M, P, J+ 1)[¥(K,L, M, P,J)|~* = ¢(K,L, M, P, J+1) [e(K, L, M, P, J)]!, (3.72)

in agreement with (2.51).
Let A(J) and u(J) be given by

AJ)=a(K—1,L-1,M—-1,P+3,J-%) b(K,L,M,P,J), (3.73)
wJ)=cK-1,L—-1,M—1,P+3,J+%)d(K,L,M,P,J). (3.74)

Then (3.64) and (3.65) give
AT+ u(J) = (2J+2)8(K, L, M,P,J+ 1) y(K,L,M,P,J). (3.75)

Also the expression for 7474, (3.67) reads

rird’ = R — f2a(K, L, M, P, J) P — fif(K, L, M, P, J) S« + 1138 T-2[A(J) —u(J)]

+38%(2J + 1)‘1(féS“f—2+2Pa) [A(T) +u(J)]. (3.76)
In (3.76) one can eliminate the pole at 2J +1 = 0 by requiring
A(=H) +p(-3) =o0. (3.77)
Take A(J) ==[J=HK+P)][J-3(M+P)][J-LL+P)], (3.78)
u(J) = —=[J+1+3iM+P)J[J+1+ 1 K+P)][J+1+1(L+P)]. (3.79)
Then looklng at (3.43) one sees that (3.75) is satisfied, as is (3.77). From (3.78) and (3.79),
AJ) = —p(—=J—1), so A(J)+u(J) and A(J) —pu(J) are respectively even and odd functions
of 2J +1:
A +p(J) = (2J+1)[=J(J+1)+A(0) —u(0)]
= Q2J+1)[-J(J+1) +772C,— §(P +2)%], (3.80)
AJ) =p(J) = J(J+1) (P+3) +A(0) —p(0)
= (P+3)J(J+1) - i2Cy + §(P +2)2 - 2/73C,. (3.81)

Substituting (3.80) and (3.81) into (3.76) and using (3.41) and (3.42) one finds
R = rdArd 4 J:A2P*(P+2)% — LAS(P + 2). (3.82)

This is the fundamental equation on which the whole of the present theory hangs. One can
argue that the choice of A(J) and x(J) was not unique— they were essentially chosen from thin
air. There might be other ways of factorizing R* with different remainders. However, given
equation (3.82), by looking at (3.76) it is easy to see that A(J) and pu(J) are fixed. Thus the
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question is: what is special about the particular choice of coefficients in (3.82)? The only answer
that is available at the moment (apart from the elegance of the subsequent theory!), is that this
is the equation that the three-twistor model of particles provides. The equation itself, however,
does not depend on any model. One can see also that any other choice of A(J) and x(J) would
give a more complicated expression for the remainder term.

Now, taking (3.82) as the correct equation, one sees that, working backwards, A(J) and u(J)
are determined uniquely, but a, 4, ¢, and d are not. However, the remaining freedom in choice
of the functions g, b, ¢, and d is easily seen to be equivalent to the freedom to rescale the states in
the different representations. Thus, given (3.82) and given that 74 raises £, /, and m by one unit,
while lowering p by three units, the solution is essentially unique.

Accordingly, to solve all equations one may take

a(K,L,M,P,J) = —[J+1—-}(K+P)], (3.83)

b(K,L,M,P,J) =[J—-}(M+P)][J-}L+P)], (3.84)

«(K,L,M,P,J) =[J+{(M+P)][J+1(K+P)], (3.85)

d(K,Ly,M,P,J) = —[J+1+%(L+P)]. (3.86)
Then from (3.64) and (3.65)

y(K,L, M, P,J) = [J+1—}K+P)][J+1+3L+P)], (3.87)
2J8(K, L, M, P,J) = [J+1(M+P)][J+}K +P)]
+[J =i (M +P)][J-;(L+P)], (3.88)

e(K, L, M,P,J) = [(K— L)) ¢(K ~L, L— M)[}(K+P) —J—1]!
x [J+ (K + PN [J = HL+P) [~ HL+P) - T—1]!
x[J+EHM+P)[J - M+P)]!, (3.89)

where g(K — L, L— M) is an arbitrary positive function. Equations (3.87), (3.88), and (3.89) are
in complete agreement with equations (2.64), (2.65) and (2.69), with the translation given by
(3.20), (3.21) and (3.22).

Next, by using the properties of /4, m4, [4’, and m4’, listed in (3.46)—(3.53) it is merely a matter
of algebra to compute the commutation properties of the operators 74 and 74'. One finds that

[r4,78] =0, [r4,7P] =0, (3.90)
[r4,r4] = hSe— 3h2PPe, (3.91)
[r4,P] = 3r4, [r4,P] = —3r4 (3.92)
[r4, K] =[r4, L] = [r4, M] = —r4, (3.93)
[r4, K] =[r4,L] = [r4, M] = r4, (3.94)

together with the Poincaré relations
[PY,r4] =0, [P%r4] =0, (3.95)
[$2,74] = ArBPAB _ 1r4PBE' | (3.96)
[S?,7r4] = — irB'PA'B 4 L fird PBE', (3.97)
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MASSIVE PARTICLES. 1 49
[Sa, 5] = tie 45 Soa PPy — f€ a4 Scru Py (3.98)

Now from the point of view of the little algebra, P44 may be regarded as a system of four
numbers, rather than as an operator.

Then the above relations (3.90), (3.91), (3.92), (3.96), (3.97) and (3.98) show that r4, r4
$44 and Pform a Lie algebra under commutation. Alternatively if one wishes to eliminate P?, one
may use P4 to project primed spinor indices into the unprimed spin space: define

SAB = SAArPBA’ = SBA, (3.99)
Fd= —y4P, 4 (3.100)

Then (3.90), (3.91), (3.92), (3.96), (3.97) and (3.98) become

(845, 8cP] = (37 S4P— 947 507), (3.101)
[Sc®, 74l = #(048 10— 114 06"), (3.102)
[ScP, 74l = (84570 — 474 00"), (3.103)
[r4, 7B] = #S, B — 1h2P6 /B, (3.104)
[re, 3Pl =14 [T3P]=—74 (3.105)
Also define Tt = Spd—31854 Ph = Spd +3Top4, (3.106)
T=T44=—%Ph. (3.107)
Then [r4, T = —r h, [Fg T] =744, (3.108)
(7,5, T, = h(3P TP =3, PT,P), (3.109)
[ras T®] = —h6 4B 7, (3.110)
[7B,TeA] = Ao 74, (3.111)
frA, Bl = kT B+ ho P T. (3.112)
Now define the (3 x 3) matrix operator
Ai= (:Z TifB) (3.113)

Then 4} is trace-free and Hermitian, and equations (3.108)—(3.112) become just
[4, A¥] = K(0F AF — 0FAf). (8.114)

Hence A4¢ generates the SU(3) Lie algebra! The SU(3) structure is naturally broken by the
formalism (graded) down to SU(2) x U(1), T generating the U(1) piece and §,# generating
the ‘isospin’ subgroup. Thus the relativistic spin vector is, for this SU(3), precisely the ‘isospin’
operator !

SU(3) has two Casimir operators. The next task is to relate these to the #-algebra Casimir

operators. One has
S BSpd = 2J7, (3.115)

r 74 = Cy— J2— 1#2(P+2)2, (3.116)
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775 S4B = Cy— LH(P +2) T2, (3.117)
— BTy = — (T+h) r, 7+ 3hT(T+Hh), (3.118)
—r 74T = - Tr 74, (3.119)
r TA 7B = 7 P Tyd — 207, 4, (3.120)
FBr Ty = Ty i1y = —1, 7 SAB 4 3 T7 74 — 35T — S, B S 4, (3.121)
T BT AT,C = YT3 48448 B(3T - ), (3.122)
T BTy4 = 8B Syd+ 1T, (3.123)
Py, =1, —3hT. (3.124)

Then the second- and third-order SU(3) Casimir operators, D, and Dy are given by, by using
(B1)-(3.124),  popy _ i g
=T2+r, i1+ iBrp+T,BTp4
= 20, — h? — h2P?, (3.125)
13D, = Ai A} A¥ + 30 A% A
— T3 —Tr 71 —74Tr  —r 74T +T Bidy,
+rpT B rd4 idr, T, B +TyAT BT, C+ 343D,
= —-3C;—3TC,+13T3 32T
= — 3C,; + 1PhCy — 1 357°P + 1#3P. (3.126)

i

Standard SU(3) representation theory characterizes the unitary representations in terms of
two non-negative integers A and x obeying
Dy = 2(A%+p2+ A+ 34+ 3u)
=—2-2[—(p—2) (A+2u+3)+(u—A) (£ +21+3)
—(A+21+3) (p+21+3)], (3.127)
Dy=—5(u—A) (A+2u+3) (+2X+3). (3.128)
Hence §(pr—A), —4(A+2px+3) and §(x + 2A 4 3) are the roots of the polynomial equation
2 —3(Dy+2)x— 1Dy = 0. (3.129)
Now using (3.41), (3.42), (3.126) and (3.127) one finds
~5(2+Dy) = —3(2C+1-7,P?)
ar(K+ L+ M?+&5[KL+ ML+ MK— (K+ L+ M)?]
1il@K—-L-M)2L-M—-K)+ (2K-L-M)(2M~—-L—-K)
+(2L-M~-K) (2M—-K-L)], (3.130)
3Dy = [ (KLM — (KL+ LM+ KM) (K + L+ M))
+ a0 (K+L+M)>3—3&(K+ L+ M)
— MK+ L+M){—}—3%[KL+LM+KM— (K+L+M)*}
= 155[2(K+ L+ M3+ 27TKLM —9(K+ L+ M) (KL+ LM+ KM)]
= 5755(2K—-L-M)(2L—-K—-M)(2M—-L—-K). (3.131)

(I

I

i
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Hence ¢ — A, —(A+2p+3) and g+ 21 + 3 are in some order }(2K—L—M), }(2L - K- M)
and }(2M — L—K), which, by using (3.23), (3.24) and (3.25) are in turn, 4d+5+s+2r,
—2s—r—2d—4 and s—r—2d—1. Since s > 0, r > 0 and d > — 1, one must have

S+2r+5+4d =pu+2A+3, (3.132)

s—r—2d—1=p—A, (3.133)

—25—r—2d—4 = —A—2u—3. (3.134)

Hence n=3s, (3.135)
A=r+2d+1, (3.136)

p=s—r+ad+2. (3.137)

In particular 24 is an integer greater than or equal to minus one.

This is the key extra requirement on the general Z-representation needed for it to be possible
to build the intertwining SU(8) algebra into unitary SU(3) representations.

With 24 integral, the roots of ¢(x) = 0 (equation (3.11)) are = juin, *(Jmax+1) and *a,
where all roots are integral or half-integral together and o > fyax + 1.

Next note that the entire formalism is symmetric under permutations of K, L, M and P, with
a single crucial exception: from (3.20)-(3.25), K, L, M, P and J obey the inequalities

HK+P)> —1—4(L+P) > J > [H(M+P)| (3.138)

which are reflected in the asymmetric nature of the function ¢(KX, L, M, P, J).

However, under permutations of K, L, M and P it is always possible to adjust the definition
of e(K,L, M, P, J) to solve the permuted equation corresponding to (3.82), with one important
subtlety: in solving equation (3.82), with P replaced by K or L for an operator 74 which respec-
tively raises K or L by three units, while lowering L, M, Por L, M, K each by one unit, in order
for 4" to be the Hermitian conjugate of 74, one sees from equations (3.82), (3.71), (3.73), (3.74),
(3.78) and (3.79) thate(K, L, M, P, J) must change signif J changesfromintegral to half-integral.
Since no Z-representation contains both half-integer and integer spin states, this is no problem,
provided the 74 operator is regarded as a mathematical device and not a (complex) observable,
since a Hilbert space is still a Hilbert space, if the norm of every non-zero state is negative !

Thus if the half-integer spin states are regarded as separated from the integer spin states,
equation (3.82) can be solved for an arbitrary permutation of K, L, M and P.

On the other hand, if the half-integer spin states are placed in the same Hilbert space as the
integer spin states, then equation (3.82) can only be solved with M in place of P, but not with
K or L in place of P. However, at the same time one sees the remedy: with K or L in place of P
one needs a minus sign in front of the 7474’ term, or equivalently, r4"is to be taken as the negative
adjoint of 74. Then all is well.

Let 54, t4 and u4 be the solutions of (3.82) with, respectively, K, L or M in place of P, with
adjoints, respectively, —s4’, — ¢4’ and «4’. Then §44’, 54, 54" and K generate SU(1, 2), as do §44,
t4, t4' and L, whereas $44, y4, u4" and M generate SU(3).

Consider, first, the case where M replaces P. The symmetry carries right through, the
intertwining operators have the SU(3) structure and the new Casimir operators, u'— X/,

7 , Vol. go1. A
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— (A" +24'+3)andp’ + 21" 4+ 3areinsome order } (2K — L —P), (2L —K—P)and } (2P - L - K),
which are, in turn, s+ 2r+2d+4, —2s—r—4d—5 and s —r+2d+ 1. Hence

Wo=s5s+2d+1, (3.139)
XN =7, (3.140)
m=s—r—4d—2. (3.141)

Up to now, in either the P formalism or the M formalism, it has only been shown that the
intertwining algebra obeys the SU(3) commutation rules. It has not yet been shown that the
states do combine together to form complete SU(3) representations. In fact, they do not, yet.’

Considering the P formalism, given A and g, P must range from — (24 + Q) to 2A +x for a full
SU(8) representation. If one uses (3.135), (3.136) and (3.137), 2d + 1 would have to range from
—p to A, in conflict with the requirement that 2d+1 > 0, unless # = 0. The trouble here is that
as one lowers the P value, using the 74 operator, to the point at which 2d+ 1 is zero, P and M
become indistinguishable, since from (3.25), 2d+1 = }(p—m). To complete the SU(3)
representation, one must switch at this point to the A/ formalism.

To unify the P and M formalisms explicitly, put A = A’ and # = p’, and define 4, A and g by

|6—3(p—A)| =2d+1, (3.142)
Adp+2=r+5+2d+3, (3.143)
b—2A—p) =s—r. (8.144)
Then when b —1(x — A) is chosen non-negative
=3(s—r+4d+2) =1ip, (3.145)
A=r+2d+1, (3.146)
M= (3.147)

When b — (¢~ A) is chosen non-positive

b=3%s—r—4d-2) = im, (3.148)
A=r, (3.149)
p=s+2d+1, (3.150)

Using b, A and g to describe the states allows one to treat the M and P formalisms simul-
taneously. One sees that (4, m4, [4" and m" all leave A and p unchanged. So all operators to be
considered are (for now) diagonal in A and . Accordingly, states |, A, z, f, ¢) will be abbreviated
by just |b,7, ¢), with scalar product

(6,7, 416,7, 9> = €(b,)) ¢} (@ Ppp ™) [(Z+ 1) (2 —g) ']~ (3.151)
Then equations (3.31)-(3.34), (3.43), (3.64), (3.65), (3.77), (3.70), (3.71) and (3.72) read

145, 7,q) = @°Ppp o) HaB PpA|lb—1,j+4,g+ 1)+ (2 +1—q)ad|b—1,7+4,¢)], (3.152)
mA|b, j, g = P4 pa®|b—1,j~ 4, ¢y —q@d|b—1, j—}, g~ 1), (3.153)
b, 7, ¢y = a®|b+1,7—4%,q)+qP4 a4b+1,5—%,q— 1), (8.154)
m4\b,j, ¢y = (@PPpp a?) [ —ad|b+1,j+%, ¢+ 1)+ (2 +1—¢q) P4 &b+ 1,7+, ¢)], (3.155)
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2(J+1)8(B,J+1) ¥(B,J) = [J+ 1 +1B+}(2A +4+3)] [T+ 1~ }B—}(2A++3)]
X [J+1+3B—}A—@)][J+1-}B+}A—p)]
X[J+1+3B=3(A+20+3)][T+1-1B+3(A+2u+3)],

(3.156)

a(B+1,J+})d(B,J) = (B, J), | (3.157)
o(B+1,J—1) b(B,J) = 2J8(B, J), (3.158)

a(B+1, —=1)b(B, —}) +¢(B+1,0)d(B, —1) = 0, (3.159)
a(B+1,J—})[e(B+1,J— 1] = b(B, J) [¢(B, J)], (3.160)
c(B+1,J+3) [e(B+1,J—3)]"1 = (B, J) [e(B, J)], (3.161)
(2J +2) 8(B, J +1) [7(B, J)]* = e(B, J +1) [¢(B, J)] . (3.162)

When & —§(#— A) is non-negative, equations (3.73), (3.78) and (3.79) read
A(J)=a(B+1,J—4%)b(B,J)
=-[J=i(K+P)][J-1(M+P)][J-}(L+P)]
=—[J-3B-32A+p+3)][J-$B+3(A—p)][J—-3B+%(A+21+3)], (3.163)
u(J) =[J+14+3B+52A+p+3)][J+1+EB—-1(A—p)]
x[J+1+3B-1(A+2u+3)]. (3.164)
When b —3(z— A) is non-positive, equations (3.73), (3.78) and (3.79) read
A(J) = a(B+1,T~1) b(B, J)
= —[J-HK+M)][J - 1(P+ M)][J - }(L+ M)]
=—[J=3B-3CA+u+3)][J—-4B+3A—-p)][J-B+4(A+21+3)], (3.165)
p(I) = [T +1+3B+HEA+p+ 9] [T+ 1+ 1B~ (A )]
x[J+1+3B—1(A+2u+3)], (3.166)

the crucial point being that A(J) and x(J) have the same functional form in either the formalism

where P is selected out or where M is, allowing this unification of the M and P formalisms.
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To solve all equations one may take, from (3.83)—(3.86)

a(B,J) = —[J+1—~L1B—3(2A+p+3)], (3.167)
b(B,J) = [J—3B+3A-p)][J - 1B+3(A+24+3)], (3.168)
o(B,J) = [J+1B—3A-u)][J+1B+1(2A +u+3)], (3.169)
d(B,J) = —[J+1+3B—}(A+2u+3)]. (3.170)

The inequality (3.138) gives
Ntp—|B=3(u=X)| > 2J > |B-§(A-p)], (3.171)
—3(2u+2) < B< (2 +p). (3.172)
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Also 2J, A, u and 3b are integers such that b —}(# — A) is integral, 4 > 0, J —3b is integral and
o(B,J) = g(A1) [T =1+ B+3(A+ 2+ 3] [T~ B+3(A + 2u+3)]!
X[J=3B+iA-p)'[J+EB+3(2A+p+3)]!
X[=J=1=3B+3A+2n+3)![J+3B-5(A-pn)]! (3.173)
where g(A, ) is positive. Note that all the factorials are now of the form z! where 0 < zisintegral,

so they are individually positive.
The fundamental equation (3.82) now reads

R = yAyd 4 LA2P4(3B 4 2)%— 1£S(3B +2), (3.174)

whereas in (3.66) and (3.58)—(3.61)
r4 = hlda(B,J) (2J + 1)1+ him4c(B, J) (2J + 1)1, (3.175)
r4 = hl4y(B,J) (2J + 1)1+ fmAd(B,J) (2J +1)7, (3.176)

r4 and 74 obey the commutation rules
[r4,78] = 0, [r4,B] =r4, [r4,r4] = #S*—h23BP, (3.177)

and the trace-free, Hermitian matrix operator

« _ (Bf T4
4 = (u SAAf—%BﬁPAAI) (3.178)

generates the SU(3) Lie algebra:

[A%, A = h(oF AL — o8 A%), (3.179)
A% 62, =0, AY = A%, (3.180)
.. " 1 o0 v (10
0%, and 0% being given by % = (O PAA')’ 0y = (O PAA’) (8.181)

(here o and o’ are amalgamated indices, which interchange under complex conjugation,
(+,4) and (-,4) respectively, - being a one-dimensional index).

To end this section consider the possibility of extending the parity operation s to the r4
operator. This seems to be impossible in the framework established, so far, for reasons which
will become clearer, when the description of the 74 operation is discussed in terms of quantum
fields. However the operation ¢ does extend: with the definitions

efrd(efe)t = atd 4 P4 rB, (3.182)
cfr (ef)t = @t PAga®, oF = 1, (3.183)
B(efi)™t = — B, (3.184)

together with, from (1.59), (1.56), (1.51) and (1.52),

cftR*(efe) ™t = t45 RV, (8.185)
epS(ept) ™t = — 14y SV, (3.186)
ofeP?(efe) ™t = t4p Py, (3.187)
ofp M (cfe)™t = tAg 14 1By, B 1, Med, (3.188)
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one obtains an automorphism of all the algebraic structure obtained up to now, especially
equations (3.174) and (3.177). The operation ¢#, of course, reduces just to the ordinary parity
operation of the Poincaré sub-algebra.

One notes that the map

14 > 0B yd =B — g0 yd (3.189)
4 s 0B p 4’ o108 — @il ypd’ (3.190)
P, M@, R Pa Afab Ra (3.191)

also gives an automorphism of the algebra, so by combining ¢/ with €iZ for suitable # one may
choose @ = 1 = @in (3.182) and (3.183), the general automorphism then being ¢z ¢'#% for real ¢.

Note also that the transformation (3.182)—(3.188) may be neatly encapsulated by a trans-
formation on the indices &', a:

AY — TEAL Ty, (3.192)

0¥ - TESY T4, ox— (T-1484(T-1E, (3.193)
1 0

4 £ i £ = 194

where T4 and T% are glven by T¢ ( 0 —aty, PC”B)’ (3.194)
1 0

£ = 195

Ta (0 —aPop tCA/) (8.199)

4. THE COMPLETE INTERTWINING ALGEBRA

In the previous section equation (3.82) was solved and the SU(3) intertwining algebra
derived. Now the permuted equations corresponding to the K or L formalisms will be tackled.
One requires the solutions to

R = 454" + LA2P(K + 2)2 — 14S%(K +2), (4.1)
R = t444 L 2P (L +2)2 — 14S*(L +2), (4.2)
where §4" = —s4', t4 = — 4’ in accordance with the discussion in § 3. The work will be done in

the Pformalism, by using the scalar product and the valuesof y (K, L, M, P, J) and 6 (K, L, M, P J)
given in equations (3.89), (3.87) and (3.88). The transformation s4 will take (K,L,M,P) to
(K-8, L+1,M+1,P+1), t4 will take (K, L, M,P) to (K+1, L—-3, M+1, P+1).

First consider s4. Let IZ, mg, I, m¢” be the appropriately permuted operators corresponding
to [4, m4, [4" and m4 given in equations (3.31)—(3.34). Then

s4 = HAF(K, L, M, P,J) (2J + 1)\ + fm h(K, L, M, P, J) (2J + 1)~ (4.3)
s = hl4 g(K, L, M, P, J) (2J + 1)~ + hm" k(K, L, M, P, J) (2J + 1)1, (4.4)

where fIK, L, M, P,J), h(K,L, M,P,J), g(K, L, M, P,J) and k(K, L, M, P, J) are to be found.
Then the analogues of (3.70) and (3.71) are
f(K+3,L—1, M—1,P-1,J-4)[g(K,L,M,P,J)]!
= —e(K+3,L—1,M—1,P—1,J—1)[e(K, L, M, P,J)]
= —[J-}K+M)][J-3K+P)[J-HK+L)], (4.5)
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RK+3,L—-1,M—1,P—1,J+ 3 [k(K,L,M,P,J)]?
=—e(K+3,L—1,M—1,P—1,J+%)[e(K,L,M,P,J)] !
=[J+14+ LK+ L)) [J+1+3(K+M)][J+1 +%;(K+IP)]. (4.6)
The analogues of equations (3.64) and (3.65) are
fEK+3, LA, M—-1,P-1,J+ %) k(K,L,M,P,J) = v(K,L,M,P,J)
=[J+1-3(K+M)][J+1-}(K+P)], (4.7)
h(K+3,L—-1,M—-1,P-1,J—-%)g(K,L,M,P,J) = 2J8(K,L, M, P,J)
=[J-3K+L)][J+1K+L)][J+1K+M)][J+LK+P)]. (4.8)
Here (3.87), (3.88) and (3.89) have been used, with g(K — L, L — M) taken to be just [ (K — L)!]?

in (3.89).
Equations (4.5)—(4.8) are solved by

FK, L, M,P,J) = —~[J+1—}(K+M)][J+1-}(K+P)], (4.9)
g(K,L, M,P,J) = J—1(K+L), (4.10)
h(K, L, M, P,J) = [J+ 3K +L)][J+ (K +M)][J+ (K +P)], (4.11)
k(K,L, M,P,J) = 1. (4.12)

Then instead of equations (3.73) (3.74), (3.78) and (3.79), one has
/\(J) =f(K+3,L—I,M—-I,P—I,J—%)g(K,L,M,P,J)

= —[J—}K+L)][J - HK+M)] [T~ HEK+D)], (4.13)
p(J) =h(K+3,L—1,M—1,P— LI+ KK, L,M,P,J)
= —[J+ 1+ K+ L)1 [T+ 14+ }(K+ M) [T +1+ 1K+ P)]. (4.14)

But (4.13) and (4.14) exactly coincide with the permuted versions of (3.78) and (3.79). Hence
equation (4.1) follows.

Now consider 4. Let I, m{, I{*', m{"" be the permuted operators corresponding to [4, m4,
[4" and m4’ given in equations (3.31)-(3.34). Then

t4 = hlf w(K,L, M, P,J) (2J + 1)~ + tmg w(K, L, M, P, J) (2J + 1)1, (4.15)
4= W v(K, L, M, P, J) (2J + 1)~ + fimi x(K, L, M, P, J) (2J + 1)1, (4.16)
The analogues of equations (4.5) to (4.8) read

w(K—1,L+3, M—1,P—1,J— 1) [#(K, L, M, P, J)]-*

= —e(K—1,L+3,M—1,P—1,7—1)[e(K, L, M, P, J)]-!

=—{[V-1L+P)JJ-1L+K)][J-HL+ M)}, (4.17)
w(K—1,L+3,M—1,P—1,J+3)[#(K, L, M, P, J)]-!

= —e(K—1,L+3,M—1,P—1,J+})[¢(K, L, M, P, J)]-*

= —-[J+1+iL+KN{[J+1+LL+M)][J+1+LL+P)]}, (4.18)
w(K—1,L+3,M—1,P—1,J+3})x(K,L, M, P,J) = y(K, L, M, P, J)

=[J+1+ 3L+ M)][J+1+3(L+P)], (4.19)
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wK—-1,L+3,M-1,P-1,J-3)v(K,L,M,P,J) = 2J8(K,L, M, P,J)
=[V-1L+ K] -HL+M)][J+EL+K)][J-4L+P)]. (4.20)
Equations (4.17)-(4.20) are solved by
u(K,L,M,P,J) = —1, (
o(K,L,M,P,J) = [J-L(L+P)][J-}(L+K)][J-LL+M)], (4.22
w(K, L, M,P,J) = J+}L+M), (
x(K,L,M,P,J) = —[J+1+ 3L+ M)][J+1+1(L+P)]. (
Then instead of (4.13) and (4.14) one has
AJ) =u(K~-1,L+3,M-1,P—-1,J-)ov(K,L,M,P,J)
=—[J-}L+P)]|[J-2L+K)][J-2L+M)], (4.25)
w(J)==[J+1+3L+K)][J+1+3L+M)][J+1(L+P)] (4.26)

exactly coinciding with the permuted versions of equations (3.78), (3.79), (4.13) and (4.14).
Hence equation (4.2) follows.

At this point a summé.ry is in order. One has found r4, s4 and ¢4, with their adjoints, r4
—s4"and —¢4. Define in the P formalism p, g, o, & by

plk.lm,p,j,q) = |k—4,L,m,p+4, 7, 9), (4.27)
plk, Lm,p, j, gy = |k+4,,m,p—4, j, ), (4.28)
alk,m,p, j,q) = |k, 1—4,m,p+4, j, ), - (4.29)
&k, Lm,p, 1, ¢ = |k, [+4,mp—4,7,q). (4.30)

In the (b, A, u) formalism, these definitions read

Plo A psgs gy = [b+5,A—1,u, j, 9, (4.31)
Plos A, @) = [b—%, A+ 1,4, 4, 9, (4.32)
oo, A m5, ) = b+ %, A5+ 1, 4, ¢), (4.33)
&b, A m0, ) = |b—%, A, 8 ~1, 5, 9. (4.34)

Then in the P formalism, r4, 54, t4, r4'| 54" and ¢4 are given by
r4 = hl4a(K,L,M,P,J) (2J + 1)1+ tmAc(K, L, M, P, J) (2J + 1)1
s4 = hplAf (K, L, M, P, J) (2J + 1)1 + hpm4h(K,L, M, P, J) (2J + 1)1

r4 = KAB(K, L, M, P, J) (2J + 1)~ + km4d(K, L, M, P, J) (2J + 1)1

(
(

t4 = holtu(K, L, M, P,J) (2J +1)-1+ kiom4w(K, L, M, P, J) (2J + 1), (4.37
(
s4 = hplg(K, L, M, P, J) (2J + 1)~ + hpmAk(K, L, M, P, J) (2J + 1)1 (
(

t4' = #614(K, L, M, P, J) (2J + 1) + hom2x(K, L, M, P, .J) (2] + 1)1
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where a, b, ¢, d, f, g, h, k, u, v, w and x are given in equations (3.83)—(3.86), (4.9)-(4.12) and
(4.21)—(4.24). In the (b, A, #) formalism, they are given by

a=-[J+1-}B-1(24+M+3)], (4.41
b=[J=1B+3(A-M)][J—LB+3(A+2M+3)], (
¢=[J+3B-3A-M)[J+3B+4(A+2M+3)], (
d=—[J+1+4B-4(A+2M+3)], (
f=—[J+1+3B-4(A+2M+3)][J+1-}B—-}(24+ M +3)], (
g=J+iB-§(4-M), (
h=[J—3B+LA-M)][J-3B+L(A+2M+3)][J+3B+3(2A+M+3)],  (4.47

(

(

(

(

(

k=-1, 4.48
u=-—1, 4.49
v=[J—3B+3(A+2M+3)][J+3B-4(A-M)][J+3B+5(24+M+3)], 4.50
w=[J—-3B+}(A-M)], 4.51

x=—[J+1-1B-32A+M+3)][J+1+1B-}(A+2M+3)].

The operators /4, m4, 4" and m4’ are given in the P-formalism by equations (3.31)-(3.34) and
in the (b, A, ) formalism by equations (3.152)—(3.155). The scalar product in the P-formalism
is given by equation (3.89) with g(K—L,L—-M) =[(K—L)!]? in the (b, A,x) formalism and
by equation (3.173) with g(A,x) = 1. '

Using the properties of {4, m4, [4" and m4’ given by equations (3.46)—(3.53) and the relations.
(4.27)—(4.40), (3.83)—(3.86), (4.9)—(4.12) and (4.21)—(4.24), one finds in the P formalism, the

following commutators:
[r4,54] = [r4,¢4] = [s4,t4] = 0. (4.53)

Considering next, for instance, the commutator of s4 and #7:

#2[s4,t8] = — poldmB[J — }(K+ M)][J - {(K+ P)][J+ (L + K)][2J(2J +1)] !
+polBmA[J + K+ L)][J+ 3K+ M)][J+3(K+P)][2J(2J +1)]
—pomAB[J+ LK+ L)][J+1+ K+ M)][J+1(K+P)][2J(2J+1)] 1
+pomBIA[J + 2L+ K)][J+1—-HK+M)][J+1-LK+P)][(2J +2) (2J +1)]-L

(4.54)
Using (3.50) and (3.51) one sees immediately that symmetric parts cancel. Collecting together
the skew parts, one obtains just
2 s4, 8] |k, Lym, p, g, @) = —e*P[j+ 4+ R E=2,0-2,m+2,p+2,5,¢).  (4.55)
Similarly one obtains
2(r4, 5] |k, L, m, b5, 00
= —cB[j+1—§(k+p)][J+ 1R+ k-2, 1+ 2,m+2,p-2,5,9),  (4.56)

h=2[td, rB] |k, L,m, b, ), @)
=—e4B|lk+2,1-2,m+2,p—2,7,9). (4.57)
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Accordingly, define X, ¥ and Z in the P-formalism and (b, A, ) formalism:

X|klym,p,g,qy = [F+3k+D]k—2,0-2, m+2, p+2,7, ), (4.58)
Yk l,mp, j,q) = |k +2,0—2, m+2, p—2, j,q), (4.59)
ZikLm,p, gy ) =+ 1 -2k +p)1 [+ 2(k+p)] k- 2,042, m+2, p—2, j,9), (4.60)
X6, A m,5,0) =[j—4b+3(A-p)] |6+ 3, A= 1, u+1, 5,9, (4.61)
Yo, A0, = b=, An+1,5,0), (4.62)
ZIb, Aoy gy = [F+1— 30 =32+ +3)] [+ 3b+3(@A+4+3)] |b— 3, A~ L, j, ). (4.63)

Then X, Y and Z have adjoints X, ¥ and Z given by
X|k,bmp, 5y @) = [ =3k + D] |k +2,1+2,m—2,p~2, j,9), (4.64)
YIkLmpygoq) = = [ =2+ +1+30+)] k=2, 1+2,m—2,p+2,5,9), (4.65)
Zlk lym,p,j,q) = — |k+2,1—2,m—2,p+2,7, 0, (4.66)

X6, gy ) = [ +30=3A=m)] b~ 3, A+ Ln= 1,5, ), (4.67)

Y6, 0,10,y = — [ =3 +3(A+ 204 3)] [+ 1+ 30 —§(A+ 21 +3)] b+, A, 1= 1,5, 0, (4.68)

Z1b, A 1,5, 0y = — |6+ 3, A+ 1, 1,5, 9. (4.69)
Then from (4.55)—(4.57) one has

[r4,sB] = —h%4BZ, [t4,rB] = — h24BY, [s4,t8] = — h2e4BX. (4.70)
Next, by applying the Jacobi identity and (4.70)
0 = [r 4[5, 7] +[rO, [r4, 5] 1 + 5, [r5, 7] ]

= [, Y] (—#2) €50 +[1€, Y] (= #2) 647

= h%4CrB, Y. (4.71)
Hence, and similarly, 0=[rB, Y] =[rB 2], (4.72)
0 = [sB,Z] = [sB, X], (4.73)
0=[t8,X]=[57Y]. (4.74)
Again, from the Jacobi identity, if A4, 44 and v4 are defined by
[, X]=AM, [4,Y]=pt, [H4,Z]=v4 (4.75)
then 0 = [s4, 25,70 ] + [, [, s4] ] + [, [s4,77] ]
= — h?(ueBC + ABel4 4 pCedB), (4.76)
Hence A = pd = p4, (4.77)
Define 7 and 7 in the P-formalism by
Tk, Lmp,j,q) = |k—2,1—-2,m+2,p+2, j, ¢, (4.78)
Flk,dym,p, 7, q) = |k+2,1+2,m—2,p—2, 7, >, (4.79)

8 Vol. g01. A
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60 G.A.J.SPARLING
and, in the (b, A, u)-formalism, by
b Apm g ) = [b+5A-1,u+1, 5,9, (4.80)
Fo,Ap o) = |6—5A+1L,p—1,7,¢). (4.81)
Then computing [74, X] = A4, one finds
A = hrldl(K,L,M,P,J) (2J + 1)t + hrm4n(K, L, M, P, J) (2J + 1)1, (4.82)
A = hil4Ym(K, L, M, P, J) (2J + 1) Y + hfm“p(K, L, M, P, J) (2J + 1)1, (4.83)
where A4 = A4" and, in the P formalism,
UK, L,M,P,J) =J+1-%(K+P), (4.84)
m(K,L, M, P,J) = —[J - {(K+ L)][J - i(L+P)], (4.85)
n(K,L,M,P,J) =[J+}(K+L)][J+1(K+P)], (4.86)
p(K,L,M,P,J) = —[J+1+}(L+P)], (4.87)
and, in the (b, A, #) formalism,
l=J+1-3B—-L(A+2M+3), (4.88)
m=—[J+3B-4A-M)][J—-3B+L(A+2M+3)], (4.89)
n=[J—3B+{A-M)][J+3B+324+M+3)], (4.90)
p=—-[J+1+5B—L(A+2M+3)]. (4.91)
Using (4.53), (4.70) and the Jacobi identity, one obtains quickly
0=[rd,X]=[s4,Y] =[t4,Z]. (4.92)
Using (3.91), (4.53), (4.70), the relations
[¢B,P] = —tB, [tB,S$447) = — 4 PB4’ LfiB p44’ (4.93)

(analogous to (3.93) and (3.96)), and the Jacobi identity, one has again
— 1[4, Y] 65€ = [14,[1%,r°] ]

= [£B,[r4,7C] ] = [B, — hSC4’ 4 172PPOA']

= AACPBA — j2BPOA" = [2eBOIDP 4 (4.94)

Hence, and similarly, [r, Y] = —tPPy4, (4.95)
[r4,Z] = —sPPy4, (4.96)

[s4,Z] = —rPP,4, (4.97)

[s4, X] = —tPP,4, (4.98)

[t4,X] = —sPPy4, (4.99)

[t4,Y] = —rPPy4. (4.100)

By using (4.75), (4.77), (4.70) and the Jacobi identity,
[A4, 7] = [[s4, Y],#%] = [[s4,"], Y] = — #*[ X, Y] 47
= [X,[t4,r5]] = [t4, [ X, 7%]] = [A%, 4] = o (4.101)
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Hence, and similarly, [X,Y]=[Y,Z] =[2,X] =0, ' (4.102)
[A4, 18] = [A4, s8] = [A4,rB] = 0. (4.103)

By using (4.75), (4.53), (4.98) and (4.70),

[A4, s8] =[[r4, X1, s%] = [[s¥, X],74]

= —[tPP,? r4] = — 2YPAB (4.104)
[A4, 18] = — i2ZPAB| (4.105)
[A4,rB] = — i2XP4E, (4.1086)
By using (4.70), (4.92), (4.99), (4.53),
—12[X, T]e4B = —[X,[rF,t4]] = —[rF,[ X, t4]] = 0. (4.107)
So, and similarly, [X, 7] =[X,Z] =[Y,Z] =o. (4.108)

By using (4.70), (4.98), (4.99) and the analogues of (3.91) for s4 and #4,
— 124X, X] = [X,[1%,547)]
= [tB; [Xs J‘A']] + [sA', [tB’s X]]

= 1%, (PPyt] = [s4, sPPp ]

= %48 (L + K). (4.109)
So, and similarly, [X, X] = - }(L+K), (4.110)
' (Y, 7] =§(L+P), (4.111)
[Z,Z] = (K +P). (4.112)

Using (4.75), (4.108), (4.95) and (4.99), one has

(A4, Y] = —[[r4, X], Y] = ~[[r*, Y], X]
= [tPPp®, X] = —[X, PPy 1]

= —sBPP Py A
' (4.113)
A, Z] = —t4, (4.114)
A, X] = —r, (4.115)
By using (4.75), (4.73) and (4.102)

[A4, X] = [[s4, Y], X] = [[X, ¥],54] = 0, (4.116)
[A4, Y] =0, (4.117)
[A4, Z] =0, (4.118)

By using (4.75), (4.117) and (4.103)
[A4, AB] = [A4,[sB, Y]] = 0. (4.119)

8-2
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Finally, using (4.75), (4.113), (4.104), (4.111) and the analogue of (3.91) for s4,
[A€,24] = [A4[54, Y]]

= [, [A4, Y11+, [s4, A4]]

= —[s4,54] + 7, 57, 1)

= —[s4,s4] + A2[Y, Y] P4«

= — h(S* - 3#2KP%) + #2P*(L + P)

= — k(8% +1H2MPY). (4.120)
Equations (4.53)—(4.120) establish that 8¢, K, L, M, P, r4, s4, t4 24, X, ¥ and Z form a
real Lie algebra of twenty-eight dimensions, three for S¢, three for K, L, M and P, since

K+L+M+P =0, four for each of 4, s4, t4 and A4 and two for each of X, ¥ and Z, giving
twenty-eight in all. The full result will now be summarized in the (4, A, %) formalism:

TueoreM B. The operators r4, s4, and t with their adjoints 14, —s4', —t4’ generate a twenly-eight
dimensional real Lie algebra 2 under commutation, spanned by S¢, B, (A +1), (M +1),rd, s4 4 rd' g4
t4, X, Y, Z, X, Y, and Z, obeying the following commutation rules:

[S4,8%] = ifiewbed P, S, (4.121)
[$%,74] = frBPAB _ }firAPBB (4.122)
[$?,54] = fisBPAB _ Lfis4PEB (4.123)
[$,t4] = kiBPAB — L}4PBE, (4.124)
[S?,A4] = AABPAB _ Lj\4PBE (4.125)
[r4, 58] = — /2e4BZ, (4.126)
[54, (8] = — f2e4BX, (4.127)
[4, 78] = — #2%ABY, (4.128)
[A4,75] = 0, (4.129)
[A4, 58] = 0, (4.130)
[A4, 18] =0, (4.131)
[X,74] = =24, (4.132)
[X,s4] =0, (4.133)
[X,t4] =0, (4.134)
[X,A4] = 0, (4.135)
[Y,74] = 0, (4.136)
[¥,54] = — A4, (4.137) .
[Y,t4] = 0, (4.138)
[Y,24] =0, (4.139)
[Z,74] = 0, (4.140)
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[Z,54] = 0, (4.141)
[Z,#4] = — 24, (4.142)
[Z,A4] = o, (4.143)
[X,$9] = 0, (4.144)
[Y,87 = o, (4.145)
[Z,87] = o, (4.146)
[r4,78] = 0, (4.147)
[s4,55] = 0, (4.148)
[t4,t8] = 0, (4.149)

[A4,AB] = 0, (4.150)
[r4,74] = hSa—}A2Pe(3B), (4.151)
[r4,s4] = 0, (4.152)
[r4,t4] = 0, (4.153)
[r4, A4] = — A2 XPe, (4.154)
[s4,54] = hSe— 1#2P[ — 3B +4(24 + M +3)], (4.155)
[s4,¢4'] = 0, (4.156)
[s4,A4] = #2Y Po, (4.157)
[#4,t4] = hSe— L#2P[ — B—&(A+2M +3)], (4.158)
[¢4,A4] = RRZ P, (4.159)
[A4,A4'] = S+ Lf2Pa[%(M — A) — B], (4.160)
[r4,X] =0, ' (4.161)
[r4, Y] = —tPPyA, (4.162)
[r4,Z] = —sP Py, (4.163)
[s4, X] = tP'PpA, (4.164)
[s4, Y] = 0, (4.165)
[s4,Z] = —rD'PpA, (4.166)
[t4, X] = sD'PpA, (4.167)

- [t4, Y] = —=rPPpA, (4.168)
[(t4,Z] =0, (4.169)
[A4, X] =r4, (4.170)
[A4, Y] = —s4, (4.171)
[A,Z] = —t4, (4.172)
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64 G.A.J.SPARLING
[X, X] = B—-3(4-M),
[Y,Y] = B—%(A+2M+3),
(Z,Z] = B+3(24+M+3),

[X, Y] =0,
[Y,Z] =0,
(2, X] =0,
[X, Y] =0,
[¥,2] = o,
[Z,X] =0,
[B,A+1] =0,
[B,M+1] =0,
[A+1,M+1] =0,
[B,r1] = 14,
[B,54] = 54,
[B,¢4] = 414,
[B, A4 = —§A4,
[A+1,74] =0,
[A+1,54] = —s4,
[A+1,t4] =0,
[A+1,24] = =24,
[M+1,r4] = 0,
[M+1,54] =0,
[M+1,t4] = t4,
[M+1,24] = A4,
[B,87] = o,
[4+1,87 =0,
[M+1,5% =0,
[8, X] = 84,
[B,Y] = -3Y,
[8,2] = -3Z,
[4+1,X] =-X,
[A+1,Y] =0,
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MASSIVE PARTICLES. I 65
[A+1,Z] = -Z, (4.205)
[M+1,X] = X, (4.206)
[M+1,Y] =7, (4.207)
[M+1,Z] = 0. (4.208)

CoroLLARY B 1. 2 contains SO(6) @ SO(2), or equivalently U(4), as a compact sub-algebra.

The proofis by direct construction. Form the four by four Hermitian matrix operator

SA4 _L1(B—3(M—A)) PA4 ¥ r4
A = < A4 — (M~ A) nX ) (4.209)
ra hX A[2B+3(M—A)]

Then with 8l = ( 0 1 0), (4.210)
0o o0 1
| P44 0 0

and o = ( 0 1 O), (4.211)
0 0 1

one finds, using (4.121)—(4.208), that 47" obeys

AT =AY, AT8h =0, (4.212)
(47, 471 = —h[oF A7 - o7 4F], (4.213)

so A1 generates the SU(4) Lie algebra which is isomorphic to the SO(6) Lie algebra; A+ M +2
commutes with all of 47, so the corollary is proved: the sub-algebra of 2 spanned by $¢, B,
A+1, M+1, 24, 74 24 4 X and Xis SO(6)® SO(2) ~ U(4). Similarly one may show that
2 contains U(3,1) and U(2, 2).

A basis for a Cartan sub-algebra of 2 is given by B, A+ 1, M+ 1, and S;, a component of §2:
Sea & 4 (Pbog ). |

Combine B, A, M and S into the following quantities:

Hy=—-S;—$B—-{(M+24+3), (4.214)
H =8,—3B-}(M+24+3), (4.215)
H,=—B+}(M+24), | (4.216)
Hy=M+1. (4.217)
A root for 2 is an element ¢ of 2 obeying
[H;,q] = a4, (4.218)

for numbers o, &y, o3 and 4.

A root will be called positive if and only if a; > Oor oy = 0, 2y > 0, 0r ¢y = a3 = 0, 23 > 0, or
o = ay = ag = 0, ¢, > 0. Using a spinor basis, a4, &5 P4, for the unprimed spinors, one finds
that the two components of each of 4, A4, s4 and 4" give positive roots, as do X, Y, Z and
S_ =S4ABPB'g &y Then rd4, A4, 54 14 X, ¥, Zand S, = S48 Py B a 4 ay give negative roots.
The various commutators are given in table 1. In table 1, the meaning of, for instance, the entry
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1 at the s4 row, S; column, is that S; commuted with the first component s4e 4 of s4 gives §s4a 4.
Similarly for the other entries.

It will be noticed that the a, root pattern is exactly that of the complex simple Lie algebra,
D, or SO(8,C). To check that this is a correct identification, one needs to compute the Dynkin
diagram of the algebra.

TABLE 1. SYSTEM OF POSITIVE ROOTS OF 2

B A+1 M+1 Sy g ay ay Ay

rd -1 0 0 % 0 1 1 0
-1 0 0 —-% 1 0 1 0

A4 -1 -1 1 1 0 1 0 1
-1 -1 1 -1 1 0 0 1

54 1 -1 0 1 0 1 -1 0
Y -1 0 —-% 1 0 -1 0

14’ -1 0 -1 -} 1 0 0 -1
-1 0 -1 % 0 1 0 -1

X -3 1 -1 0 0 0 1 -1
Y -3 0 1 0 0 0 1 1
z -2 -1 0 0 1 1 0 0
S 0 0 0 -1 1 -1 0 0

With the help of equations (4.121)—(4.208) and table 1, the Killing form is relatively easy to
compute, by using the definition

9,9 = Tr(adj (¢)-adj (¢) (4.219)

giving the scalar product of elements g and ¢’ in 2, adj being the adjoint action of the Lie algebra
on itself.
One finds the only non-vanishing scalar products are as follows:

(B,By =18, (A, Ay=12, (M,M)=12, {(A,M)= -6, (4.220)

A, rdy = (54,547 = (4,14 = (A4, A4 = 1272P44, (4.221)

(59, 8V = 6h2(POPb — 2g%), (4.222)

(X, Xy=—Y,Yy=—(2,Z) = 12. (4.223)

In particular (4.222) gives (83,83 = 6. (4.224)
Then (4.220) and (4.224), with (4.214)—(4.217) give

(Hy, Hy = 125,,. (4.225)

Thus the metric on the Cartan algebra is of the standard Euclidean type. The same is therefore
true on the dual space. From table 1, the simple positive roots are given by the following

four-vectors:
a=(1,-1,0,0), b= (0,1, —1,0), (4.226)

= (O’ 0,1, — 1): d= (0> 0, 1, 1)> (4’227)
The angles ab, bc and bd are each 120°. The angles ac, ad and ¢d are each 90°. Hence the Dynkin

diagram is

(4.228)
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and the complexification of 2 is indeed D,. Hence 2 is a real form of SO(8, C). In particular
2 is simple.

2 is not SO(4, 4) or SO(5, 3), because it contains SO(6), nor is it SO(7, 1), since it contains
SU(3,1). Hence, by elimination, 2 is SO(6, 2). In particular the U(4) algebra (4.209) is the
maximal compact sub-algebra of 2.

One may also see that 2is SO(6, 2), more constructively, as follows: $2, A<, 74, A4 r4' X and
X, B, A+1 and M+ 1 generate the algebra " (= U(4)). Then

2=H @2, (4.229)

where 2 is generated by s4, t4, Y, Z, s4, 4, Y and Z.
From (4.121)—(4.208) one sees that

(A A< H, [H,PlcP and [P,P]c K. (4.230)

Also from (4.220)—(4.233) the Killing form is positive definite on ", negative definite on £, and
A is orthogonal to 2. A is sixteen dimensional, 2 is twelve dimensional. All this information
uniquely picks out SO(6,2). The Weyl unitary trick, replacing 2 by i#?, would render the
algebra compact, hence SO(8).

Summarizing one has:

CoROLLARY B2. 2 is the real Lie algebra SO(6,2), of rank four, with a Cartan algebra spanned by
B, A+1, M+1 and Sy 2 has Cartan decomposition X ©P, where A~ = U(4), the maximal compact
sub-algebra, is spanned by S% B, A+1, M+1, X, r4, 24, X, r4" and A4, and 2P is spanned by s4, i4,
Y,Z, s4,t4, Yand Z. A ®iP is then the associated compact real form SO(8,R).

The break-up (4.229), satisfying (4.230) deserves further consideration. Equation (4.229)
shows that 2 is a twelve dimensional S#"-module. However there is no twelve-dimensional
irreducible SU(4) representation, so 2 is not irreducible. Starting at (4.121)-(4.208) one sees
quickly that £ breaks up into P =P,oP, (4.231)

where P, is spanned by s, t4, ¥ and Z, P_ by s4, t4, Y and Z, and each of P, and P_form a
six-dimensional irreducible representation of SU(4):
[#,P)=P, [H,P]=P. (4.232)

Also from (4.121)—(4.208),
[P,P]l=0, [P,P]l=x, [P,P]=0. (4.233)
Thinking in terms of SO(6) rather than SU(4), P, and P_ transform as the fundamental
six-dimensional representation of SO(6), which as an SU(4) representation is represented by

the Young tableau [, corresponding to skew tensors of two indices in four-dimensional space.
A" contains the basic SU(3) algebra, § given in (3.177). Each of P, and P_is reducible as an

S-module: P, = Pt@P;, (4.234)

P_=Pr@Pr-, (4.235)
where P7 is spanned by ¢4 and ¥, P7 by s4"and Z, P~ by ' and ¥, and P* by s4 and Z. Each
is then either a triplet or conjugate triplet representation of SU(3). One has

[S, Pi] = le-_s [S,Pt] = PE, [S,P7] = PT, [S,Pz] = Pz, (4'236)
(P4, P1] = [P, 1] = [P, P3] = 0, (.237)
[Pz, PZ] =[P+, PZ] =[P+, Pt] = 0. (4.238)

9 Vol. go1. A
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68 G.A.J.SPARLING
Also under the action of S, #" decomposes as
H =SON, ON_®CaD, (4.239)

where N, is the triplet spanned by A4 and X, N_ the anti-triplet spanned by A4’ and X, and
C and D are singlets spanned by A4 —M and A + M + 2 respectively.

One has [C,C] =[D,D] =[C,D] =0, (4.240)
[C,N,] =N, [D,N]=N,, (4.241)
[N,N,]=[N,N]=o, (4.242)
[N,N]=SaC, (4.243)
[S,€]1 =[$,D] =0, [S,N]=AN, [S5]=5, (4.244)
[(P1,8]="Pf, [PL,N] =N, (4.245)
[P,C] = P, [P},D] =Pt (4.246)
[P%,8] =Py, [P, N,]=PL, [Py,N]=0, (4.247)
[P7,Cl =Py, [Py,D] =Py, (4.248)
[P=,8]=P-, [P-,N,] =P, [P7,N.]=0, (4.249)
[P-,C] = P=, [P-,D]=P-, (4.250)
[P+,8] = P+, [P+,N,]=0, [Pt,N]=0P-, (4.251)
[P+,C] = P+, [P+,D] = P, (4.252)
[PL, PL] = N,, (4.2583)
[Pf,P-] = S® @D -1C), | (4.254)
[Py, PZ] = N, (4.255)
[P, PH] = S@ (3D +1C), (4.256)

where by $D—4C and 3D +4C one means the algebras generated by (A+2M+3) and
(24 4+ M + 3) respectively.

Notice that the grading given here is a (4, M) grading: the algebra S®@C®D has weight
(0, 0), N, has weight (—1, 1), N_ has weight (1, — 1), P} has weight (0, 1), P7 has weight (1, 0),
P~ has weight (0, —1) and P* has weight (—1, 0).

The triplets (¢4, Y), (s4,Z) and (A4, X) have identical transformation properties under $ as
do the anti-triplets (—¢4, Y), (—s4,Z) and (A4, X).

There are several ways of describing the structure of the algebra &2 more concisely than the
presentation given in equations (4.121)—(4.208). Two such descriptions will now be given. The
first is tied to the Cartan decomposition. Define

feKLYy —s4'pP K K
¥t = (JA'PA,L 0 - ﬁZ). ' (4.257)
—tE hZ 0
Then, with 47 given by (4.209), one finds, using (4.121)—(4.208),
[47, L¥] = — 2880 LY — LAST LI, (4.258)
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L¥" has Hermitian conjugate

ﬁeK/LI 7 SAPAK’ - tK’
Ly=|-s4P L 0 - ﬁZ)
_ K V4 0
which obeys (47, Lyg] = 208, Ly; + 3407 L.
Also L¥Y = —[}¥ L, = — Ly and
[Lk'l'a Lm’n'] =0, [Llcb Lmn] = 0,
(L¥Y, Ly, ] = — 4500, Aj) — 202 (A + M + 2) o, 8%,

In view of (4.262), one may define the Hermitian U(4) generators
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BY = AU + (A +M+2) 8.

Then BY, I¥" and L, obey o B '
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[A+M+2,B] =0,
[BY, L¥"] = —2h8% LN7
[B?s th] = 2ﬁ3{l:: Lm,
[A+M+2,[F1] = L¥7,
[A+M+2,L,] =~ Ly,
[L¥Y, L] = — 4ﬁé‘{,’§' Bﬁl.

The next method exploits the symmetry between r4, s4, t4 and P4, A5

A= pd A= gd A= g4 A= pd_2\B
xpd=rd, wyd =54, xgd =14, x4 =P AT,

x4 =4

Then, by using (4.121)—(4.208),

[, 241 = 0, if i #j,

[xi4, 2] = ASe— 3 h2K; Pe,
where the K, are given by K, =3B,

K,=—-B+4(24+M+3),

K;=—-B—4(A+2M+3),

K,=—-B+3M-A1).

Next [Kw xjA] = xjAs [Kis xjA'] = _xjA,’
(Ko 5] = — 854, [Ky 24 = B4,

[K;» Kj] = 0.

Then [xiA’ ij] = — #2e4 B‘Xvij’

i’ A — A A — 1A’ A4 — ’
y Xt E ST, Xg =1 s Xy =PABAB.
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70 ' G.A.J.SPARLING
where X;; = X;, X;; = 0, for each ¢:

Xo=2Z, X,;=-4

X5 =Y, X,=1,

Xpy=X, X3 =2 (4.284)
Therefore, [x;4, 28] = — Lh2e; 5, XA, (4.285)

where €, = €, = € 4 and €55, = 0, unless ¢, 7, k and [ are all unequal, when ¢;;,; = 1.

Next [Xips X5a] = 2K+ Ky — K3 - Ky), (4.286)

(X1, Xoo] = (K, + K5~ K, — K, (4.287)
[Xog, X14] = 2(Ky+ K3 — Ky — K, (4.288)
[X.j, Xi] = 0, wunlessi,j, £ and [ are all unequal, (4.289)
[Xej #F] = ey P 41, (4.290)
[Xe 28] =0, ifk#4,k+#7, (4.291)
[Xy ] = P xP, ifi £], (4.202)
Finally, [Se, X;] =0, [S§% K;] =0, (4.293)
[Se,x,B] = fix, A PBL — Lhix, B PAL, (4.294)
[S2, x5 = — fix; 4 PAB + Lfix, B’ P44 (4.295)
[$2, 8Y] = itieedP, S, (4.296)
[K;, X ] = 2X,, if i#5,1#k, (4.297)
Ky Xip] = —2Xy. (4.298)
With this notation, one easily sees the generalization of (4.209): define, for fixed, distinct p and ¢,
S§44' —Lh(K, — K,) P44 —Phxl xd
A7 = ( — P xB ~34(3K,+K,) —hX,, ) (4.299)
x5 $epary Xsy §A(3K,+ Ky

Then (4.213) holds. In addition, define, for s and ¢ such that no two of p, ¢, s and ¢ are equal,

heKLX,, —xd' P K xff
Lk = (xg"PA,L 0 —1X,, |, (4.300)
—xf hX,, 0
heK'U'X, o xd P K —xf
L, = (—xﬁ‘PAL' 0 —ﬁXsp), (4.301)
X hX 0
B = A+ 1(K,~K,) 8. (4.302)

Then (4.258), (4.260), (4.261), (4.262), (4.267), (4.268) and (4.271) all hold. The analogues of"
(4.269), (4.270) and (4.266) now read

[K,— K, [¥"] = 4L, (4.303)
[Ks— Ky, L] = — 4Ly, (4.304)
[Ks_Kta B?r,] = 0. (4.305)
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When (p,q) = (1,4) or (4,1), Bi generates U(4), when (p,q) = (2, 3) or (3,2) B! generates
U(2,2). For all other unequal pairs (p, ¢), B! generates U(3,1).

Theorem B is a statement about an algebra of operators. To finish this section and summarize
the preceding work, here is the corresponding statement about the Hilbert space acted on by
the operators.

TueoreM C. The states |b, A, p,j,q) where A = 0, p = 0, b—%(u—A), 2/ and j—3b are integers
obeying the inequalities (3.170) and (3.171) with scalar product given by (3.151) and (3.172) form a
Hilbert space, €. With the action of 2 on F given by equations (4.35)—(4.40), (4.58)—(4.63), (4.82)-
(4.83) and (2.24), S forms an irreducible Hermitian representation of the simple Lie algebra 2 (SO(6, 2)).
S breaks up into the direct sum of representations S, of SO(6) corresponding to symmetric trace-free tensors
of k indices in six dimensions, one for each non-negative integer k; k is then equal to A+ p.

For theorem C, one must check that the action of 2 behaves correctly at the boundaries of
the representation. This is easy to do. However another representation of the Hilbert space 3#
is available, which renders this checking almost trivial. Since this representation is of some
physical interest, it will now be given. Itinvolves a transition from the (4, A, x) basis, to a ‘quark’,
‘di-quark’ basis. States will be labelled by ¢, 7, 4, d and ¢ where g, 7, dand d are, respectively, the
occupation number of ‘quarks’, ‘anti-quarks’, ‘diquarks’ and ‘anti-diquarks’. The labels
q, G, d, d and t are related to b, A, u, j and ¢ by the following translation table:

b=3(g-7)+3(d-2), (4.306)

A=G+d, (4.307)

n=g+d, (4.308)

9% =g+, (4.309)

4=t (4.310)

with inverse translation g=3b+7+5pu—-A), (4.311)
7=~ 1b+i—bu-2), (+312)

d=3b—j+3(20+p), (4.313)

T=—h-j+iA+2p), (+:314)

=g (4.315)

From (3.171) and (4.311)—(4.314), one sees that ¢, 7, d and d are non-negative integers. Thus
the boundaries of the representation are determined by the vanishing of one or more of the
quantities ¢, 7, 4 and d.

Looking at (4.306)—(4.309), one sees that the quantum numbers of the ¢, 7, d, d system are just
those of a system of g quarks, 7 anti-quarks, d di-quarks and d anti-diquarks, where the quark is
thought of as an SU(3) triplet contributing 1 to # and 0 to A, of spin and baryon number 3
The anti-quark contributes as an anti-triplet: 0 to g, 1 to A, of spin 4 and baryon number ~%.
The diquark contributes as a ‘bound state’ of two quarks, where the SU(3) representations have
combined to form an anti-triplet, the spins have interfered destructively to give spin zero and
the baryon numbers have added, to give 4. Similarly for the anti-diquark. Given the quantum
numbers for the quark, anti-quark, diquark and anti-diquark the quantum numbers for the
whole system just add constructively.
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The 2 representation now reads
(% 47, d: J’ th: ?, d: (Z t> = (aDPDD’ aD')IH—?it! [(q+q+ 1) (q+q—t) !]_1
xd!d' g\ gt (d+q+7+ 1) (d+q+G+1)!, (4.316)

ﬁ_l(&DPDD’ a‘D') Sal% a’ d, ‘7’ t> = aA,aB’PB'AIqﬁ ?, da g) t+ 1>
+3(g+7—1) (@t —aB PpAalPPyt)|g, , d, d, t)
Ft(g+G—t+1)TAGBPLA|q, 7, d,d,t — 1), (4.317)
lAlq’ qa d’ gs t> = (&DPDD’OLD/)“1 [aB'PB’A]q: q+ 1: d“ 1’ g:t'l' 1>
+(9+?+1—t)5“|q,?+1:d—1,t7,t>], (4'318)
mA|q, ?’ d, J’ t> = PB'A aB,!q— 1) ?: d: g+ 1: t) _to_‘A|q_ 15 ?, d, g‘{' I:t_’ 1>a (4-319)
14)q,7,d,d,ty = a¥|q,§—1,d+1,d, &) + Py aB|q, §—1,d +1,d,t— 1), (4.320)
mA,Iq: q, d: ‘Z t) = (aDPDD’aD')—l["‘a‘A,Iq'!" 1’ q’ d: ‘?_ 1: i 1>

+(q+G+1—t) Pp2 aB|q+1,3,d,d—1,8)], (4.321)

plg, 5,4ty = |lg+1,7—1,d,d—1,1, (4.322)
0l¢,3,d,d,ty = |¢+ 1,7 - 1,d+1,d,1), (4.323)
7)¢,5,d,d,0) = |g+1,5-1,d,d,1, (4.324)
p=pQ[(D+Q+Q+2)(@+1)(D+1)], (4.325)
F=01QDD+Q+Q+1)(§+1), (4.326)
7=11Q(Q+1)7, (4.327)

X =10, (4.328)

Y =pir, (4.329)
Z=—011D(D+Q+Q +1), (4.330)
X=171Q, (4.331)
Y=prDD+Q+q+1), (4.332)
Z=—or7, (4.333)
H=1Q+Q) D+Q+G+1) QU +F+1) (D+1)]7, (4.334)

w4 =m?(Q+Q+2) D(Q+Q+1) (D+Q+Q+2) (Q+1)]7, (4.335)

rd = HAD(Q+Q+ 1)1+ /maQ(D+Q+Q+1) (Q+Q + 1), (4.336)

s4 = —fiplADD(Q + @ + 1)1+ hpmAQ(D + Q +Q + 1)
x(D+Q+Q+1) (Q+Q+1)71, (4.337)
t4 = —hol4(Q + Q + 1)1+ hiomAQ(Q + Q + 1), ( )
M=~ AD(Q + G + 1)1+ hrmAQ(D+ Q@+ Q +1) (@ + @ + 1)1,  (4.339)
= HAQD+Q+Q+1) (Q+Q+ 1)1 +/maD(Q+Q + 1), ( )
s4° = hp UAQ(Q+ Q@+ 1) —ip~m® (Q+ @+ 1), ( )
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MASSIVE PARTICLES. I 73
4 = ho U4 D+ Q+Q+1) D+ Q+Q+1)Q(Q+Q +1)1
—hoimADD(Q+Q + 1)1,  (4.342)

~trU4QD+Q+Q+1) (@+§ + 1)1
+hrimAD(Q+ @ +1)"1.  (4.343)

AL

i

The effects of the various operators on ¢, §, d and d are summarized in table 2.

TABLE 2. SHIFTS IN ‘QUARK’ CONTENT CAUSED BY THE VARIOUS
OPERATORS OF THE ALGEBRA 2

Ag A7 Ad Ad
X 1 —1 0 0
Y 1] 1] 0 1
VA 0 0 -1 0
{4 terms rd 0 1 -1 0
54 1 0 -1 -1
14 1 0 0 0
A4 1 0 -1 0
m4 terms rd -1 0 0 1
54 0 -1 0 0
4 0 -1 1 1
A4 0 -1 0 1
X -1 1 0 0
7 0 0 0 ~1
Z 0 0 1 0
{4’ terms rd’ 0 -1 1 0
54’ -1 0 1 1
14° -1 0 0 0
47 -1 0 1 0
mA4’ terms rd’ 1 0 0 -1
s4’ 0 1 0 0
14’ 0 1 -1 -1
A47 0 1 0 -1

A quick inspection shows that whenever — 1. appears in table 2, the coefficient of the appro-
priate piece vanishes at the boundary of the representation, as required.

The ‘quark’~‘diquark’ representation of the system perhaps reveals most clearly the heart of
the present theory. If one thinks of the quarks and diquarks as real physical entities, then there
are two quite distinct mechanisms for raising the spin of the system — one by adding relative
orbital angular momentum to the quarks and diquarks, the other by adding more quarks. Here
the first option is simply excluded.

The author is deeply indebted to R. Penrose, F.R.S., L. P. Hughston, Z. Perjés and E. T.
Newman for their help and encouragement over the years. In particular, it was Z. Perjés who
drove home to the author the importance of abstracting from real models. Also the abstract
approach taken here would probably never have developed fully if the author had not had
available the elegant work of Mack (1977) on representations of the conformal group.
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